Nonlinear viscoelastic-elastoplastic constitutive model of permanent deformation for asphalt pavement
-
摘要: 为了正确预估沥青路面的永久变形, 对沥青路面永久变形的非线性粘弹性有限元法进行了研究, 推导了广义Maxwell模型的非线性粘弹性有限元法, 建立了沥青路面永久变形的非线性粘弹-弹塑性本构模型, 从弹性、非线性弹性、塑性、粘弹性、非线性粘弹性等方面对沥青路面的永久变形进行了分析, 对沥青路面的永久变形进行了计算, 并将计算结果和SHRP的计算结果以及SWK/UN轮辙试验结果进行了对比。计算结果表明: 沥青路面永久变形的非线性粘弹-弹塑性本构模型是有效的, 其路面变形计算值与SHRP的计算值相对误差为6.567%, 与SWK/UN轮辙试验值相对误差为6.069%。
-
关键词:
- 路面工程 /
- 沥青路面 /
- 永久变形 /
- 广义Maxwell模型 /
- 粘弹性 /
- 非线性粘弹性有限元法
Abstract: In order to correctly predict the permanent deformation of asphalt pavement, nonlinear viscoelastic finite element method was studied, the finite element method of nonlinear viscoelasticity for generalized Maxwell model was deduced, a nonlinear viscoelastic-elastoplastic constitutive model of permanent deformation for asphalt pavementhen was set up, and the permanent deformation of asphalt pavement was analyzed depending on its material properties, such as elasticity, nonlinear elasticity, plasticity, viscoelasticity and nonlinear viscoelasticity, etc., the permanent deformation of asphalt pavement was simulated by using the model, SHRP and SWK/UN experiment, and the numerical results were compared.Comparison result shows that their relative error are 6.567% and 6.069% respectively, the model is effective. -
表 1 沥青粘结料特性
Table 1. Asphalt binder properties
材料特性 基准材料 AAC-1 AAG-1 AAK-1 AAM-1 粘度/针入度 AC-8 AR-4000 AC-30 AC-20 SHRP PG分级 PG58-16 PG58-10 PG64-22 PG64-16 原始沥青 动力粘度(60 ℃) / (Pa·s) 41.9 186.2 325.6 199.2 运动粘度(135 ℃) / (m2·s-1) 1.79×10-4 2.43×10-4 5.62×10-4 5.69×10-4 老化沥青 动力粘度(60 ℃) / (Pa·s) 101.4 325.3 970.8 394.7 运动粘度(135 ℃) / (m2·s-1) 2.39×10-4 3.04×10-4 9.30×10-4 7.44×10-4 表 2 混合料组成
Table 2. Mixture composition
路面类型 沥青粘结料 骨料 空隙率/% p1 AAK-1 RD 3.7 p2 AAK-1 RD 6.5 p3 AAC-1 RD 3.8 p4 AAC-1 RD 6.5 p5 AAM-1 RD 4.6 p6 AAM-1 RD 7.5 p7 AAG-1 RH 4.7 表 3 非线性弹性常数
Table 3. Nonlinear elasticity constants
MPa 材料常数 路面类型 p1 p2 p3 p4 p5 p6 p7 C1 5.06×102 5.06×102 4.36×103 1.28×103 2.68×103 2.76×103 5.78×101 C2 -2.53×102 -5.06×102 -1.64×102 -3.22×102 -5.61×103 -3.28×103 -8.09×102 C3 -5.06×104 -5.06×104 -2.73×106 -2.96×104 -2.81×106 -2.29×106 -1.16×106 C4 5.06×104 2.02×105 1.09×105 2.96×105 1.12×106 8.19×105 1.16×105 C5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 C6 1.26×108 2.53×108 5.46×106 4.74×108 2.81×108 4.14×107 2.89×108 C7 -5.06×107 -3.79×107 -7.64×107 -2.37×107 -2.81×107 -3.28×106 -1.16×107 C8 5.06×107 5.06×107 1.09×107 5.92×107 2.81×107 3.28×105 1.16×107 C9 5.06×105 5.06×105 1.09×106 8.88×106 2.81×107 6.55×107 1.16×106 表 4 粘弹性材料常数
Table 4. Viscoelastic material constants
MPa 元件i 路面类型 p1 p2 p3 p4 Ei ηi Ei ηi Ei ηi Ei ηi 1 3.67×10-4 8.25×10-1 3.67×10-4 8.25×10-1 3.89×10-4 8.64×10-1 1.81×10-3 8.69×10-1 2 6.24×10-4 1.42×10-1 6.34×10-4 1.42×10-1 6.28×10-4 1.17×10-1 2.37×10-3 1.13×10-1 3 1.10×10-3 2.47×10-2 1.10×10-3 2.47×10-2 7.20×10-4 1.60×10-2 3.11×10-3 1.49×10-2 4 2.61×10-3 5.86×10-3 2.61×10-3 5.86×10-3 9.70×10-4 2.15×10-3 4.02×10-3 1.93×10-3 5 4.23×10-3 9.51×10-4 4.23×10-3 9.51×10-4 1.40×10-3 3.10×10-4 4.98×10-3 2.39×10-4 6 1.92×102 4.31×10-4 1.92×10-2 4.31×10-4 5.53×10-3 1.23×10-4 4.16×10-2 1.99×10-4 7 1.71×10-1 3.86×10-4 1.72×103 3.86×10-4 8.92×10-2 1.98×10-4 9.36×103 4.49×10-4 8 8.00×10-1 1.80×10-4 8.00×10-1 1.80×10-4 9.00×10-1 2.00×10-4 0.00 0.00 元件i 路面类型 p5 p6 p7 Ei ηi Ei ηi Ei ηi 1 1.02×10-2 8.63×10-1 1.15×10-2 8.65×10-1 3.67×10-4 8.68×10-1 2 1.40×10-2 1.18×10-1 1.55×10-2 1.17×10-1 4.83×10-4 1.14×10-1 3 1.92×10-2 1.62×10-2 2.10×10-2 1.58×10-2 6.39×10-4 1.51×10-2 4 2.59×10-2 2.19×10-3 2.81×10-2 2.12×10-3 8.05×10-4 1.91×10-3 5 4.93×10-2 4.16×10-4 3.42×10-2 2.58×10-4 9.96×10-4 2.36×10-4 6 1.22×10-1 1.03×10-4 1.07×10-1 8.09×10-5 8.33×10-3 1.97×10-4 7 7.32×10-1 6.17×10-5 7.50×10-1 5.66×10-5 1.87×10-1 4.44×10-4 8 0.00 0.00 0.00 0.00 8.00×10-1 1.89×10-4 表 5 塑性材料常数
Table 5. Plastic material constants
材料常数 路面类型 p1 p2 p3 p4 p5 p6 p7 屈服应力/MPa 1.00 1.00 2.00 1.00×10-3 3.00 3.00 1.00 强化系数 1.00×103 1.00×103 5.00×102 5.00×102 2.00×103 2.00×103 5.00×102 表 6 沥青路面的车辙深度
Table 6. Rutting depth of asphalt pavement mm
-
[1] Wu Zhong. Finite element simulation of rutting on superpave pavements[D]. Manhattan: Kansas State University, 2001. [2] Hua Jian-feng, White T. A study of nonlinear tire contact pressure effects on HMA rutting[J]. The International Journal of Geomechanics, 2002, 2 (3): 353-376. doi: 10.1061/(ASCE)1532-3641(2002)2:3(353) [3] Sousa J B, Weissman S L, Deacon J A, et al. Permanent deformation response of asphalt aggregate mixes[R]. Washington DC: National Research Program Council, 1994. [4] Long F M. Permanent deformation of asphalt concrete pavements: a nonlinear viscoelastic approach to mix analyses anddesign[D]. Berkeley: University of California at Berkeley, 2001. [5] Erkens S M J G, Liu X, Scarpas A. 3D finite model for asphalt concrete response simulation[J]. The International Journal of Geomechanics, 2002, 2 (3): 305-330. doi: 10.1061/(ASCE)1532-3641(2002)2:3(305) [6] Blab R, Harvey J T. Modeling measured 3D tire contact stress in a viscoelastoc FE pavement model[J]. The International Journal of Geomechanics, 2002, 2 (3): 271-290. doi: 10.1061/(ASCE)1532-3641(2002)2:3(271) [7] Judycki J. Non-linear viscoelastic behaviour of conventional and modified asphaltic concrete under creep[J]. Materialsand Structures, 1992, 25 (2): 95-101. doi: 10.1007/BF02472462 [8] 张宜洛, 郑南翔. 沥青混合料的基本参数对其高低温性能的影响[J]. 长安大学学报: 自然科学版, 2006, 26 (4): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200604008.htmZhang Yi-luo, Zheng Nan-xiang. Influence of basic parameters on high and low temperature performances of bituminous mixture[J]. Journal of Chang'an University: Natural Science Edition, 2006, 26 (4): 35-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200604008.htm [9] University of California at Berkeley, Oregon State University, Austin Research Engineers, et al. Validation of the relationship between asphalt properties and asphalt-aggregate mixperformance[R]. Washington DC: National Research Coun-cil, 1994. [10] 杜顺成, 戴经梁. 沥青混合料永久变形评价指标[J]. 中国公路学报, 2006, 19 (5): 18-22. doi: 10.3321/j.issn:1001-7372.2006.05.004Du Shun-cheng, Dai Jing-liang. Permanent deformation evaluation index of asphalt mixture[J]. China Journal of Highway and Transport, 2006, 19 (5): 18-22. (in Chinese) doi: 10.3321/j.issn:1001-7372.2006.05.004 [11] 刘红瑛, 戴经梁. 不同级配对沥青混合料车辙性能的影响[J]. 长安大学学报: 自然科学版, 2004, 24 (5): 11-15. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200405003.htmLiu Hong-ying, Dai Jing-liang. Effect of different gradations on asphalt mixture resistance to rut[J]. Journal of Chang'an University: Natural Science Edition, 2004, 24 (5): 11-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200405003.htm [12] 韩海峰, 吕伟民, 何桂平. 水作用下沥青混合料永久变形特性的表现形式[J]. 中国公路学报, 2003, 16 (4): 4-8. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200304002.htmHan Hai-feng, Lu Wei-min, He Gui-ping. Effects of water on permanent deformation potential of hot-mix asphalt[J]. China Journal of Highway and Transport, 2003, 16 (4): 4-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200304002.htm [13] 赵可, 卢永贵, 魏如喜. SMA高温稳定性研究[J]. 中国公路学报, 2004, 17 (2): 11-17. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200402003.htmZhao Ke, Lu Yong-gui, Wei Ru-xi. Research on high temperature properties of SMA[J]. China Journal of Highwayand Transport, 2004, 17 (2): 11-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200402003.htm [14] 武建民, 李晓军. 沥青混合料小梁疲劳试验的有限元模拟[J]. 长安大学学报: 自然科学版, 2004, 24 (1): 5-8. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200401002.htmWu Jian-min, Li Xiao-jun. Simulation of asphalt mixtures beam test with finite-element method[J]. Journal of Chang'an University: Natural Science Edition, 2004, 24 (1): 5-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200401002.htm [15] 张宜洛. 抗滑级配类型沥青混合料的抗滑性能[J]. 长安大学学报: 自然科学版, 2003, 23 (1): 7-10. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200301001.htmZhang Yi-luo. Skid resistance regulatity of different grades bituminous mixture[J]. Journal of Chang'an University: Natural Science Edition, 2003, 23 (1): 7-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200301001.htm [16] Peng Miao-juan, Xu Zhi-hong. Research on nonlinear constitutive relationship of permanent deformation in asphalt pavements[J]. Science in China Series G: Physics, Mechanics & Astronomy, 2006, 49 (6): 671-682.