-
摘要: 为了能够准确有效地分析混凝土梁中预应力钢筋的力学性能, 模拟结构中存在的普通钢筋、预应力直线钢筋和预应力曲线钢筋, 提出了一种预应力混凝土梁非线性分析的单元模型。应用有限元理论, 采用全拉格朗日列式的三维杆单元模拟预应力钢筋; 采用实体退化组合壳单元模拟结构; 应用钢筋单元和混凝土单元之间的位移场关系形成钢筋对混凝土单元的贡献, 将预应力钢筋对结构的作用直接反映在单元模型内部。预应力混凝土T梁的破坏过程模拟结果表明梁的跨中挠度计算结果和试验实测数据吻合, 单元模型有效地反映了预应力束的力学性能。Abstract: In order to analyze the mechanics properties of tendon exactly and effectively, simulate normal steel bar, linear tendon and curved tendon in prestressed concrete beam, a nonlinear analysis element model of prestressed concrete beam was presented.In the model, based on finite element method, tendon was simulated by 3-D link bar element of total Lagrangian method, solid degenerated-combined shell element was used to simulate prestressed concrete beam, and the stiffness of link element contributing to concrete element was computed according to the displacement relationship of tendon element and shell element, the action of tendon contributing to the structure was directly reflected inside the element.The simulation result of the destroyed process of prestressed concrete T beam shows that the computation deflection and test deflection in middle span are accordant, and the model can simulate the mechanics properties of tendon.
-
表 1 混凝土力学性能
Table 1. Mechanical properties of concrete
梁编号 弹性模量/GPa 抗压强度/MPa 抗拉强度/MPa 1 35.40 36.0 3.30 2 36.70 36.2 3.40 平均值 36.05 36.1 3.35 表 2 预应力钢筋力学性能
Table 2. Mechanical properties of prestressed bar
试件编号 弹性模量/GPa 抗拉强度/MPa 1 224.0 1 680.0 2 218.0 1 680.0 3 214.0 1 605.0 4 219.0 1 605.0 5 221.0 1 680.0 6 221.0 1 640.0 平均值 219.5 1 648.3 -
[1] 刘龄嘉, 贺拴海, 陈偕民. 悬臂梁抗裂非线性分析[J]. 长安大学学报: 自然科学版, 2005, 25 (2): 65-68. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL20050200E.htmLiu Ling-jia, He Shuan-hai, Chen Xie-min. Nonlinear analysis for cantilever beam's anti-cracking[J]. Journal of Chang'an University: Natural Science Edition, 2005, 25 (2): 65-68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL20050200E.htm [2] 徐文平, 裴铭海, 戴捷, 等. 大跨简支系杆拱桥非线性稳定性[J]. 交通运输工程学报, 2005, 5 (4): 53-57. doi: 10.3321/j.issn:1671-1637.2005.04.011Xu Wen-ping, Pei Ming-hai, Dai Jie, et al. Nonlinear stability of simply supported tied-arch bridge with long span[J]. Journal of Traffic and Transportation Engineering, 2005, 5 (4): 53-57. (in Chinese) doi: 10.3321/j.issn:1671-1637.2005.04.011 [3] 刘小燕, 颜东煌, 张峰, 等. 预应力高强混凝土梁极限承载力分析[J]. 中国公路学报, 2006, 19 (1): 58-61. doi: 10.3321/j.issn:1001-7372.2006.01.012Liu Xiao-yan, Yan Dong-huang, Zhang Feng, et al. Ultimateload analysis of prestressed high-strength concrete beam[J]. China Journal of Highway and Transport, 2006, 19 (1): 58-61. (in Chinese) doi: 10.3321/j.issn:1001-7372.2006.01.012 [4] Fragiacomo M, Amadio C, Asece M, et al. Finite-element model for collapse and long-term analysis of steel-concrete composite beams[J]. Journal of Structural Engineering, 2004, 130 (3): 489-497. doi: 10.1061/(ASCE)0733-9445(2004)130:3(489) [5] 张峰, 叶见曙. 预应力混凝土梁开裂后的结构行为[J]. 东南大学学报: 自然科学版, 2005, 35 (4): 584-588. doi: 10.3321/j.issn:1001-0505.2005.04.019Zhang Feng, Ye Jian-shu. Structure behavior of cracked prestressed concrete beam[J]. Journal of Southeast University: Natural Science Edition, 2005, 35 (4): 584-588. (in Chinese) doi: 10.3321/j.issn:1001-0505.2005.04.019 [6] Deng Lin-zhong, Michel G, Ales Z, et al. Nonlinear flexural behavior of prestressed concrete girder bridges[J]. Journal ofBridge Engineering, 2001, 6 (4): 276-284. doi: 10.1061/(ASCE)1084-0702(2001)6:4(276) [7] Song H W, You D W, Byun KJ, et al. Finite element failureanalysis of reinforced concrete T girder[J]. Engineering Structures, 2002, 24 (3): 151-162. [8] 张峰, 叶见曙. 预应力混凝土梁开裂后的受力性能分析[J]. 公路交通科技, 2005, 22 (7): 64-67. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200507016.htmZhang Feng, Ye Jian-shu. Mechanical behavior of prestressed concrete beams after cracking[J]. Journal of Highway and Transportation Research and Development, 2005, 22 (7): 64-67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200507016.htm [9] Wendel MS, Richard E M. Nonlinear FE analysis of steelconcrete composite structures[J]. Journal of Structural Engineering, 2000, 126 (6): 662-674. doi: 10.1061/(ASCE)0733-9445(2000)126:6(662) [10] Wonseok C, Elisa D S. Nonlinear finite-element analysis of composite steel girder bridges[J]. Journal of Structural Engineering, 2005, 131 (2): 304-313. [11] Wu Xiao-han. Tendon model for nonlinear analysis of prestressed concrete structures[J]. Journal of Structural Engineering, 2001, 127 (4): 398-405. [12] Kitjapat P. Nonlinear finite element for reinforced concreteslabs[J]. Journal of Structural Engineering, 2005, 131 (4): 643-649.