-
摘要: 利用ANSYS建立了高速机车轴盘制动装置热量传递模型, 计算了接触面热阻、间隙导热系数和表面传热系数, 研究了其温度场分布特性, 分析了制动生热对轴盘制动装置过盈配合的影响。计算结果表明: 合理的制动盘和盘毂间隙能增大热阻, 减小温度对过盈配合的影响, 在结构允许范围内, 建议合理的设计单边间隙为0.5-1.5 mm; 制动结束时刻, 选择合理的盘毂厚度可使过盈面平均接触压力减小5.9%-6.6%, 以降低温度对过盈配合的影响, 建议盘毂合理厚度为8 mm。Abstract: A heat transfer model of axle-pan brake device for high-speed locomotive was put forward by using ANSYS, contact thermal resistance and the coefficients of heat conductivity in gap and face were computed, the temperature field property of the device was studied, and the effect of braking heat on the interference fit of the device was analyzed. Computation result shows that the rational gap between brake hub and out hollow axle is helpful to increase the thermal resistance and reduce the temperature effect, its recommending value is within 0.5-1.5 mm; average contact pressure on interference fit face decreases by 5.9%-6.6% at the end of braking when the thickness of brake hub is rational, which may decrease the heat effect, and its recommending value is 8 mm.
-
表 1 制动装置材料与参数
Table 1. Materials and parameters of brake device
表 2 制动工况
Table 2. Braking mode
-
[1] 王文静, 谢基龙, 李强, 等. 铁路列车制动盘常用材料的热疲劳性能研究[J]. 机械工程材料, 2005, 29(2): 40-41. https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC200502013.htmWang Wen-jing, Xie Ji-long, Li Qiang, et al. Thermal fatigue properties research on railway brake disc materials[J]. Materials for Mechanical Engineering, 2005, 29(2): 40-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC200502013.htm [2] Liu Y H, Chen Z Z, Xu B Y. A numerical method for plastic limit analysis of 3-D structures[J]. International Journal of Solids Structures, 1995, 32(12): 1 645-1 658. doi: 10.1016/0020-7683(94)00230-T [3] Shi H J, Niu L S, Kom C. High temperature fatigue behavior of TZM molybdenum alloy under mechanical and thermo-mechanical cyclic loads[J]. Journal of Nuclear Materials, 2000, 278: 328-333. doi: 10.1016/S0022-3115(99)00240-8 [4] Shi H J, Kom C, Pluvinage G. High temperature isothermal and thermal mechanical fatigue on a molybdenum-based alloy[J]. Materials Science and Engineering A, 1998, 247: 180-186. doi: 10.1016/S0921-5093(97)00763-6 [5] 赵文清. 高速列车"中华之星"制动盘温度场及热应力[J]. 兵工学报, 2006, 27(1): 132-136. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO200601030.htmZhao Wen-qing. Temperature field and thermal stress of brake plate for an express[J]. Acta Armamentarii, 2006, 27(1): 132-136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO200601030.htm [6] 杨莺, 王刚. 机车制动盘三维瞬态温度场与应力场仿真[J]. 机械科学与技术, 2005, 24(10): 1 257-1 260. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX200510034.htmYang Ying, Wang Gang. 3-D transient temperature field and stress field simulation of brake discs[J]. Mechanical Science and Technology, 2005, 24(10): 1 257-1 260. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX200510034.htm [7] 阳光武, 肖守讷. 基于有限元法的客车盘形制动盘瞬态温度场分析[J]. 铁道机车车辆, 2003, 23(6): 28-31. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC200306008.htmYang Guang-wu, Xiao Shou-ne. Transient temperature field analysis of vehicle disc brake based on finite element method[J]. Railway Locomotive and Car, 2003, 23(6): 28-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC200306008.htm [8] 张奕. 传热学[M]. 南京: 东南大学出版社, 2004. [9] 赵兰萍, 徐烈. 固体界面间接触热阻的理论分析[J]. 中国空间科学技术, 2003, 23(4): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKJ200304001.htmZhao Lan-ping, Xu Lie. Theoretical analysis of thermal contact resistance between solid interfaces[J]. Chinese Space Science Technology, 2003, 23(4): 6-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKJ200304001.htm [10] Al-Astrabadi F R, Callaghan P W O, Jones A M, et al. Effects of surface finish on thermal contact resistance between different materials[J]. AIAA, Paper No. 79-1065.