留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

出行时间价值最大熵分布估计模型

俞礼军 徐建闽

俞礼军, 徐建闽. 出行时间价值最大熵分布估计模型[J]. 交通运输工程学报, 2008, 8(1): 83-88.
引用本文: 俞礼军, 徐建闽. 出行时间价值最大熵分布估计模型[J]. 交通运输工程学报, 2008, 8(1): 83-88.
YU Li-jun, XU Jian-min. Estimation models of distribution functions for travel time value with maximum entropy principle[J]. Journal of Traffic and Transportation Engineering, 2008, 8(1): 83-88.
Citation: YU Li-jun, XU Jian-min. Estimation models of distribution functions for travel time value with maximum entropy principle[J]. Journal of Traffic and Transportation Engineering, 2008, 8(1): 83-88.

出行时间价值最大熵分布估计模型

基金项目: 

国家863计划项目 2006AAllZ211

国家自然科学基金项目 50578064

详细信息
    作者简介:

    俞礼军(1972-), 男, 新疆阿拉尔人, 华南理工大学讲师, 工学博士, 从事交通运输规划研究

  • 中图分类号: U491.1

Estimation models of distribution functions for travel time value with maximum entropy principle

More Information
  • 摘要: 为提高使用时间价值数据拟合其统计分布的精度, 将最大熵原理分别与低阶(≤6)经典矩和概率加权矩相结合, 建立了时间价值低阶经典矩与概率加权矩统计分布函数模型。仿真结果表明: 在大样本量下, 利用经典矩与概率加权矩对参数估计的精度相当, 在小样本量下(< 30), 采用概率加权矩估计参数的相对误差在10%~35%之间, 而采用经典矩估计参数的相对误差在20%~80%之间。可见利用概率加权矩克服了经典矩模型在小样本量下参数估计的大偏差问题, 且利用其可以准确地预测交通方式分担率与分析交通定价政策对交通行为的影响。

     

  • 图  1  用概率加权矩参数估计的相对误差

    Figure  1.  Relative estimation errors with PWM

    图  2  用经典矩估计参数的相对误差

    Figure  2.  Relative estimation errors with SOM

    图  3  基于经典矩的时间价值曲线

    Figure  3.  Time value curves based on SOM

    图  4  基于概率加权矩的时间价值曲线

    Figure  4.  Time value curves based on PWM

    图  5  通勤出行者时间价值分布曲线

    Figure  5.  Travel time value curve of commuters

    图  6  娱乐目的出行者时间价值分布曲线

    Figure  6.  Travel time value curve for leisure

  • [1] Beesley ME. The value of time spent in traveling: some new evidences[J]. Economical, 1965, 32: 174-185. doi: 10.2307/2552547
    [2] Deserpa A C. A theory of the economics of time[J]. The Economic Journal, 1971, 81(4): 828-845.
    [3] Hensher D A. A probabilistic disaggregate model of binary mode choice[R]. Melbourne: Australian Road Research Board, 1974.
    [4] Forsyth PJ. The value of time in an economy with taxation[J]. Journal of Transport Economics and Policy, 1980, 14(3): 337-362.
    [5] Small K. The scheduling of consumer activities: work trips[J]. American Economic Review, 1982, 72(3): 467-479.
    [6] Hensher D, Milthorpe F, Smith N, et al. Urban tolled roads and the value of travel time savings[J]. Economic Record, 1990, 6(2): 146-156.
    [7] Hensher D A. Measurement of the valuation of travel time savings[J]. Journal of Transport Economics and Policy, 2001, 35(1): 71-98.
    [8] Wardman M. A review of British evidence on time and service quality valuations[J]. Transportation Research Part E, 2001, 37(2): 107-128.
    [9] Jovicic G, Hansen C O. A passenger travel demand model for Copenhagen[J]. Transportation Research Part A, 2003, 37(2): 333-349.
    [10] Brownstone D, Small K A. Valuing time and reliability: assessing the evidence from road pricing demonstrations[J]. Transportation Research Part A, 2005, 39(4): 279-293.
    [11] 周伟. 旅客时间价值[J]. 交通运输工程学报, 2003, 3(3): 110-116. doi: 10.3321/j.issn:1671-1637.2003.03.025

    Zhou Wei. Time value of passengers[J]. Journal of Traffic and Transportation Engineering, 2003, 3(3): 110-116. (in Chinese) doi: 10.3321/j.issn:1671-1637.2003.03.025
    [12] 仝允恒. 城市快速交通线项目的最优票价与政府补偿[J]. 系统工程理论与实践, 2001, 21(4): 88-91. doi: 10.3321/j.issn:1000-6788.2001.04.018

    Tong Yun-huan. Optimal fare pricing for urban rapid transport line project and government compensation[J]. Systems Engineering—Theory and Practice, 2001, 21(4): 88-91. (in Chinese) doi: 10.3321/j.issn:1000-6788.2001.04.018
    [13] 俞礼军, 严海, 严宝杰. 最大熵原理在交通流统计分布模型中的应用[J]. 交通运输工程学报, 2001, 1(3): 91-94. doi: 10.3321/j.issn:1671-1637.2001.03.023

    Yu Li-jun, Yan Hai, Yan Bao-jie. Maximum entropy method and its application in probability density function of traffic flow[J]. Journal of Traffic and Transportation Engineering, 2001, 1(3): 91-94. (in Chinese) doi: 10.3321/j.issn:1671-1637.2001.03.023
    [14] Greenwood J A, Landwehr J M, Matalas N C. Probability weighted moments: definition and relation to parameters of several distributions expressible in inverse form[J]. Water Resources Research, 1979, 15(5): 49-54.
    [15] Pandey M D. Direct estimation of quantile functions using the maximum entropy principle[J]. Structural Safety, 2000, 22(1): 61-79. doi: 10.1016/S0167-4730(99)00041-7
    [16] Shore H. Simple approximations for the inverse cumulative function, the density function and the loss integral of the normal distribution[J]. Applied Statistics, 1982, 31(2): 108-114. doi: 10.2307/2347972
    [17] HoskingJ R M, Wallis J R. Regional Frequency Analysis[M]. UK: Cambridge University Press, 1997.
    [18] Hosking J R M. Parameter and quantile estimation for the generalized Pareto distribution[J]. Tecnometrics, 1987, 29(3): 39-49.
    [19] Jaynes E T. Information theory and statistical mechanics Ⅰ[J]. Physical Review, 1957, 106(4): 620-630. doi: 10.1103/PhysRev.106.620
    [20] Jaynes E T. Information theory and statistical mechanics Ⅱ[J]. Physical Review, 1957, 108(2): 171-190. doi: 10.1103/PhysRev.108.171
    [21] Kadane J B. A moment problem for order statistics[J]. The Annals of Mathematical Statistics, 1971, 42(2): 45-51.
    [22] MallowsCL. Boundsondistributionfunctionsintermsof expectations of order statistics[J]. The Annals of Probability, 1973, 1(2): 297-303.
    [23] Shannon C E. A mathematical theory of communication[J]. Bell System Technology Journal, 1948, 27(4): 379-423.
    [24] Shore J E, Johnson R W. Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy[J]. IEEE Transact Information Theory, 1980, 26(1): 26-37. doi: 10.1109/TIT.1980.1056144
    [25] Wu N. The Maxi mum Entropy Method[M]. Berlin: Springer-Verlag, 1997.
  • 加载中
图(6)
计量
  • 文章访问数:  288
  • HTML全文浏览量:  109
  • PDF下载量:  229
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-07-02
  • 刊出日期:  2008-02-25

目录

    /

    返回文章
    返回