-
摘要: 为了有效利用线圈检测数据, 精确估计路段平均行程时间, 提出了一种路段平均行程时间估计方法。将路段平均行程时间分为平均行驶时间、平均排队时间和平均通过路口时间三部分。考虑线圈埋设的特点, 通过估计平均行驶速度得到平均行驶时间。用分段时齐Poisson过程描述车辆驶入路段过程和驶离过程, 用Markov排队模型描述车辆排队过程, 用生灭过程描述排队车辆数, 得到车辆排队模型, 计算了路段有、无初始排队的平均排队时间。基于选取与路口相关的饱和流率和平均车长, 计算了平均通过路口时间。计算结果表明: 平均行程时间估计值与实测值的误差小于12%, 说明路段平均行程时间估计方法可行。
-
关键词:
- 智能交通系统 /
- 平均行程时间 /
- 线圈数据 /
- Markov排队模型 /
- Poisson过程
Abstract: In order to availably utilize loop data and estimate the average travel time of road sections accurately and quickly, an estimation method of average travel time was proposed. Average travel time was divided into average running time, average queue delay and average crossing intersection time. Average running time was calculated by using average speed based on taking account of the installation type differences of loops. Piece-wise time homogeneous Poisson process was used to describe the arrival and departure processes of vehicles, Markov model was used to describe the queue process of vehicles, birth and death process was used to model vehicles' number in queue, and two kinds of average queue times with initial queue and no initial queue were computed. Average crossing intersection time was computed based on average vehicle length and saturation volume rate at intersection. Computation result shows that the relative error between the measure value and computation value of average travel time is less than 12%, so the method is feasible. -
表 1 计算结果
Table 1. Computation result
时段 行驶时间/s 排队时间/s 通过路口时间/s 平均行程时间/s 6:30~6:35 66.92 24.55 7.6 99.07 6:35~6:40 79.90 25.22 7.6 112.72 6:40~6:45 69.60 25.45 7.6 102.65 6:45~6:50 81.56 27.14 7.6 116.30 6:50~6:55 100.98 26.12 7.6 134.70 6:55~7:00 67.39 28.82 7.6 103.81 7:00~7:05 90.00 26.38 7.6 123.98 7:05~7:10 87.00 35.00 7.6 129.60 7:10~7:15 77.03 53.33 7.6 137.96 7:15~7:20 91.58 120.00 7.6 219.18 7:20~7:25 72.50 193.00 7.6 273.10 7:25~7:30 75.40 140.00 7.6 223.00 7:30~7:35 79.65 88.82 7.6 176.07 7:35~7:40 73.67 140.00 7.6 221.27 7:40~7:45 82.08 190.00 7.6 279.68 7:45~7:50 71.58 141.54 7.6 220.72 7:50~7:55 81.96 88.33 7.6 177.89 7:55~8:00 122.01 33.04 7.6 162.65 8:00~8:05 94.39 130.00 7.6 231.99 8:05~8:10 80.13 80.34 7.6 168.07 8:10~8:15 62.14 41.43 7.6 111.17 8:15~8:20 116.52 26.12 7.6 150.24 8:20~8:25 75.46 62.86 7.6 145.92 8:25~8:30 65.76 35.79 7.6 109.15 8:30~8:35 74.15 37.65 7.6 119.40 8:35~8:40 91.21 26.98 7.6 125.79 8:40~8:45 64.26 37.65 7.6 109.51 8:45~8:50 87.00 26.67 7.6 121.27 8:50~8:55 126.55 25.83 7.6 159.98 8:55~9:00 109.89 43.08 7.6 160.57 9:00~9:05 69.05 26.02 7.6 102.67 9:05~9:10 66.92 25.71 7.6 100.23 9:10~9:15 61.27 30.17 7.6 99.04 9:15~9:20 65.91 28.33 7.6 101.84 9:20~9:25 62.14 26.90 7.6 96.64 9:25~9:30 60.00 26.19 7.6 93.79 9:30~9:35 94.91 26.82 7.6 129.33 -
[1] 杨兆升. 关于智能运输系统的关键理论-综合路段行程时间预测的研究[J]. 交通运输工程学报, 2001, 1(1): 65-67. doi: 10.3321/j.issn:1671-1637.2001.01.017Yang Zhao-sheng. Study on the synthetic link travel time prediction model of key theory of ITS[J]. Journal of Traffic and Transportation Engineering, 2001, 1(1): 65-67. (in Chinese) doi: 10.3321/j.issn:1671-1637.2001.01.017 [2] Chien S I, Kuchipudi C M. Dynamic travel time prediction with real-time and historic data[J]. Journal of Transportation Engineering, 2003, 129(6): 608-616. doi: 10.1061/(ASCE)0733-947X(2003)129:6(608) [3] Dharia A, Adeli H. Neural network model for rapid forecasting of freeway link travel time[J]. Engineering Applications of Artificial Intelligence, 2003, 16(7/8): 607-613. [4] 朱中, 杨兆升. 基于卡尔曼滤波理论的实时行程时间预测模型[J]. 系统工程理论与实践, 1999, 19(9): 74-78. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL199909009.htmZhu Zhong, Yang Zhao-sheng. Areal-time travel time estimation model based on BP neural network[J]. Systems Engineering—Theory & Practice, 1999, 19(9): 74-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL199909009.htm [5] Dailey D J. Travel-time estimation using cross-correlation techniques[J]. Transportation Research Part B, 1993, 27(2): 97-107. doi: 10.1016/0191-2615(93)90002-R [6] 徐猛, 史忠科. 基于二次函数型路段行程时间模型描述的交通输出流特性[J]. 中国公路学报, 2006, 19(3): 77-81. doi: 10.3321/j.issn:1001-7372.2006.03.014Xu Meng, Shi Zhong-ke. Behavior of traffic outflows under description of quadratic link travel time model[J]. China Journal of Highway and Transport, 2006, 19(3): 77-81. (in Chinese) doi: 10.3321/j.issn:1001-7372.2006.03.014 [7] Nam D H, Drew D R. Traffic dynamics: method for estimating freeway travel times in real time from flow measurements[J]. Journal of Transportation Engineering, 1996, 122(3): 185-191. doi: 10.1061/(ASCE)0733-947X(1996)122:3(185) [8] Ran B, Rouphail N M, Tarko A, et al. Towards a class of link travel time functions for dynamic assignment models on signalized networks[J]. Transportation Research Part B, 1997, 31(4): 277-290. doi: 10.1016/S0191-2615(96)00036-7 [9] 荣建, 何民, 陈春妹. 信号交叉口排队长度动态计算方法研究[J]. 中国公路学报, 2002, 15(3): 101-103. doi: 10.3321/j.issn:1001-7372.2002.03.024Rong Jian, He Min, Chen Chun-mei. Dynamic model of calculating queue length at signalized intersection[J]. China Journal of Highway and Transport, 2002, 15(3): 101-103. (in Chinese) doi: 10.3321/j.issn:1001-7372.2002.03.024 [10] Athol P. Interdependence of certain operational characteristics within a moving traffic stream[J]. Highway Research Re-cord, 1965, 72: 58-87. [11] Dailey D J. A statistical algorithm for estimating speed from single loop volume and occupancy measurements[J]. Trans-portation Research Part B, 1999, 33(5): 313-322. doi: 10.1016/S0191-2615(98)00037-X [12] Wang Yin-hai, Nihan N L. Can single-loop detectors do the work of dual-loop detectors?[J]. Journal of Transportation Engineering, 2003, 129(2): 169-176. doi: 10.1061/(ASCE)0733-947X(2003)129:2(169) [13] 张和生, 张毅, 温慧敏, 等. 利用GPS数据估计路段的平均行程时间[J]. 吉林大学学报: 工学版, 2007, 37(3): 533-537. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY200703010.htmZhang He-sheng, Zhang Yi, Wen Hui-min, et al. Estimamtion approaches of average link travel time using GPS data[J]. Journal of Jilin University: Engineering and Technology Edition, 2007, 37(3): 533-537. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY200703010.htm [14] 张和生. 基于多源数据的交通状态分析方法研究[D]. 北京: 清华大学, 2006.