Rational simplified model of finite element analysis for deck pavement of long-span steel bridge
-
摘要: 为了提高大跨钢桥桥面铺装有限元分析简化模型的计算精度, 运用有限元正交数值模拟试验对模型参数进行了敏感性分析, 利用子模型技术和综合评价方法对模型几何尺寸与边界约束条件进行了优化。发现大跨钢桥桥面铺装有限元分析简化模型合理的几何尺寸与边界条件为: 纵向为3跨, 横向有8个U肋, 横隔板高度为1.2m, 纵边自由, 横边简支, 横隔板底固结。对比分析结果表明: 该简化模型具有较高的计算精度, 横向拉应变误差仅为0.7%, 纵向拉应变误差为3.7%。Abstract: In order to improve the computation precision of simplified model for finite element analysis of deck pavement of long-span steel bridge, the size and boundary conditions of the model were optimized by using sub-model technology and comprehensive evaluation method, the parameters sensitivity of the model was analyzed, the reasonable dimension and constraints of a simplified finite element model were put forward, which had 3 longitudinal spans with free borders, 8 U-shape ribs in transverseness with simple supported borders, and 1.2 m-high diaphragms with fixed bottoms.Comparison result shows that simplified finite element model has high precision, the error of transverse tensile strain is only 0.7%, and the error of longitudinal tensile strain is 3.7%.
-
表 1 几何尺寸
Table 1. Geometry dimension
mm 箱梁宽 38 700 横隔板板厚 10 箱梁高 3 000 横隔板间距 3 220 顶板板厚 14 底板板厚 12 顶板U形加劲肋 上口宽 300 底板U形加劲肋 上口宽 400 下口宽 170 下口宽 250 高 280 高 250 间距 600 间距 900 板厚 6 板厚 6 表 2 敏感性分析因素水平
Table 2. Factor levels of sensitivity analysis
水平 因素 N M H/m L T B 1 6 5 1.0 自由 固结 自由 2 10 3 1.6 固结 自由 固结 表 3 敏感性分析因素排序
Table 3. Factors arrangement of sensitivity analysis
因素 N M NM L NL H T B MT LT HB 列号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 表 4 敏感性分析结果
Table 4. Results of sensitivity analysis
试验号 N M NM L NL H T B MT LT HB 横向拉应变/10-6 纵向拉应变/10-6 层间剪应力/MPa 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 529.4 216.6 0.540 2 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 498.8 268.4 0.540 3 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 478.8 259.7 0.540 4 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 474.8 302.6 0.539 5 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 498.2 252.6 0.539 6 1 2 2 1 1 2 2 2 2 1 1 2 2 1 1 499.9 291.6 0.540 7 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 476.4 242.9 0.540 8 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2 484.6 262.5 0.539 9 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 484.1 248.7 0.540 10 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 481.3 256.2 0.539 11 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1 479.5 271.8 0.539 12 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2 479.8 259.1 0.540 13 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 485.5 285.8 0.540 14 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2 477.6 251.3 0.539 15 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2 478.3 261.6 0.539 16 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 486.1 244.4 0.539 表 5 极差分析结果
Table 5. Results of range analysis
因素 N M H L T B NL MT HB NM LT 横向拉应变/10-6 11.1 2.5 5.6 14.6 3.4 2.8 13.3 5.8 4.1 3.2 6.5 纵向拉应变/10-6 2.3 1.2 21.7 4.2 12.1 26.3 5.4 10.3 6.0 0.6 3.9 表 6 方差分析结果
Table 6. Results of variance analysis
横向拉应变 方差来源 N M H L T B NL MT HB NM LT 误差 平方和 494.0 25.0 126.0 849.0 46.3 30.3 712.0 137.0 66.9 40.1 169.0 184.0 自由度 1 1 1 1 1 1 1 1 1 1 1 4 均方和 494.0 25.0 126.0 849.0 46.3 30.3 712.0 137.0 66.9 40.1 169.0 46.0 F值 10.80 0.54 2.74 18.50 1.01 0.66 15.50 2.98 1.46 0.87 3.67 显著性 显著 显著 显著 F0.05(1, 4)=7.71 F0.01(1, 4)=21.2 纵向拉应变 方差来源 N M H L T B NL MT HB NM LT 误差 平方和 20.3 5.8 1 877.0 69.9 581.0 2 763.0 118.0 426.0 143.0 1.5 61.2 310.0 自由度 1 1 1 1 1 1 1 1 1 1 1 4 均方和 20.3 5.8 1 877.0 69.9 581.0 2 763.0 118.0 426.0 143.0 1.5 61.2 77.5 F值 0.26 0.07 24.20 0.90 7.50 35.60 1.52 5.49 1.85 0.02 0.79 显著性 极显著 极显著 表 7 模型参数优化因素水平
Table 7. Factor levels of model parameters optimization
水平 因素 H/m N L T B 1 0.8 6 自由 固结 自由 2 1.0 8 简支 简支 简支 3 1.2 10 固结 自由 固结 4 1.4 5 1.6 6 1.8 表 8 模型参数优化结果
Table 8. Optimization results of model parameters
试验号 H N T B L 原始计算结果 修正计算结果 单项指标误差/% 模型综合误差/% 1 2 3 4 5 6 7 ex, i/10-6 ey, i/10-6 τi/MPa e′x, i/10-6 e′y, i/10-6 xi yi 一次方权系数 二次方权系数 1 1 1 3 2 2 1 2 493.1 298.1 0.539 499.0 301.7 3.2 9.5 5.4 4.6 2 1 2 1 1 1 2 1 524.3 305.1 0.540 530.6 308.8 2.9 12.1 6.1 5.0 3 1 3 2 3 3 3 3 495.8 314.3 0.540 501.8 318.1 2.7 15.5 7.1 5.5 4 2 1 2 1 2 3 1 502.7 294.0 0.539 508.8 297.5 1.3 8.0 3.6 2.8 5 2 2 3 3 1 1 3 480.1 225.1 0.540 485.9 227.8 5.7 17.3 9.8 8.3 6 2 3 1 2 3 2 2 489.5 294.3 0.540 495.4 297.8 3.9 8.1 5.4 4.8 7 3 1 1 3 1 3 2 488.1 239.7 0.540 494.0 242.6 4.2 11.9 6.9 5.9 8 3 2 2 2 3 1 1 505.9 262.2 0.539 512.0 265.4 0.7 3.7 1.7 1.3 9 3 3 3 1 2 2 3 473.8 280.7 0.540 479.5 284.1 7.0 3.1 5.6 6.1 10 4 1 1 1 3 1 3 479.1 294.4 0.539 484.9 297.9 5.9 8.1 6.7 6.4 11 4 2 2 3 2 2 2 485.9 296.7 0.539 491.8 300.3 4.6 9.0 6.1 5.6 12 4 3 3 2 1 3 1 501.0 250.8 0.540 507.0 253.8 1.7 7.9 3.8 3.0 13 5 1 3 3 3 2 1 500.4 303.3 0.540 506.4 307.0 1.8 11.4 5.1 3.9 14 5 2 1 2 2 3 3 483.9 236.9 0.540 489.7 239.8 5.0 13.0 7.8 6.8 15 5 3 2 1 1 1 2 496.5 307.0 0.540 502.5 310.7 2.5 12.8 6.1 4.8 16 6 1 2 2 1 2 3 494.9 315.9 0.540 500.9 319.7 2.8 16.0 7.4 5.8 17 6 2 3 1 3 3 2 488.3 303.0 0.539 494.2 306.6 4.1 11.3 6.6 5.7 18 6 3 1 3 2 1 1 498.2 307.6 0.539 504.2 311.3 2.2 13.0 6.0 4.6 -
[1] 黄卫, 张晓春, 胡光伟. 大跨径钢桥面铺装理论与设计的研究进展[J]. 东南大学学报: 自然科学版, 2002, 32(3): 480-487.Huang Wei, Zhang Xiao-chun, Hu Guang-wei. New advance of theory and design on pavement for long-span steel bridge[J]. Journal of Southeast University: Natural Science Edition, 2002, 32(3): 480-487. (in Chinese) [2] 黄卫, 刘振清. 大跨径钢桥面铺装设计理论与方法研究[J]. 土木工程学报, 2005, 38(1): 51-59.Huang Wei, Liu Zhen-qing. Research on theory and method of long-span steel bridges deck surfacing design[J]. China Civil Engineering Journal, 2005, 38(1): 51-59. (in Chinese) [3] 徐伟, 李智, 张肖宁. 子模型法在大跨径斜拉桥桥面结构分析中的应用[J]. 土木工程学报, 2004, 37(6): 30-34.Xu Wei, Li Zhi, Zhang Xiao-ning. Application of submodeling method for analysis for deck structure of diagonal cable-stayed bridge with long span[J]. China Civil Engineering Journal, 2004, 37(6): 30-34. (in Chinese) [4] 钱振东, 黄卫, 骆俊伟, 等. 正交异性钢桥面铺装层的力学特性分析[J]. 交通运输工程学报, 2002, 2(3): 47-51.Qian Zhen-dong, Huang Wei, Luo Jun-wei, et al. Mechanical analysis of pavement of orthotropic steel deck[J]. Journal of Traffic and Transportation Engineering, 2002, 2(3): 47-51. (in Chinese) [5] Mounir E M, Kassim MT, Gerald R F, et al. Finite-element analysis of steel girder highway bridges[J]. Journal of Bridge Engineerig, 1997, 2(3): 83-87. [6] 邓学钧, 顾兴宇, 周世忠, 等. 钢桥面沥青铺装层裂缝破坏趋势研究[J]. 公路交通科技, 2002, 19(4): 4-7.Deng Xue-jun, Gu Xing-yu, Zhou Shi-zhong, et al. Study on crack failure trend of asphalt paving on steel deck bridge[J]. Journal of Highway and Transportation Research and Development, 2002, 19(4): 4-7. (in Chinese) [7] 邓强民, 倪富健, 顾兴宇, 等. 荷载形状对钢桥面铺装力学响应的影响[J]. 公路交通科技, 2007, 24(8): 7-11.Deng Qiang-min, Ni Fu-jian, Gu Xing-yu, et al. Effects of load shape on mechanical response of orthotropic steel deck pavement[J]. Journal of Highway and Transportation Research and Development, 2007, 24(8): 7-11. (in Chinese) [8] 邓强民, 倪富健, 顾兴宇, 等. 钢桥面铺装非均布轮载效应分析[J]. 东南大学学报: 自然科学版, 2007, 37(4): 676-680.Deng Qiang-min, Ni Fu-jian, Gu Xing-yu, et al. Effects of non-uniform distributed tire pressure on mechanics response of orthotropic steel deck pavement[J]. Journal of Southeast University: Natural Science Edition, 2007, 37(4): 676-680. (in Chinese) [9] 邓学钧. 中国江阴长江大桥桥面沥青铺装层高温稳定性[J]. 交通运输工程学报, 2002, 2(2): 1-7.Deng Xue-jun. Asphalt pavement stability at high-temperature for the Jiangyin bridge in China[J]. Journal of Traffic and Transportation Engineering, 2002, 2(2): 1-7. (in Chinese) [10] 王钧利. 桥面铺装疲劳性能参数及可靠性[J]. 长安大学学报: 自然科学版, 2004, 24(3), 39-42.Wang Jun-li. Fatigue performance parameters and reliability of bridge deck pavement[J]. Journal of Chang'an University: Natural Science Edition, 2004, 24(3): 39-42. (in Chinese) [11] 张起森, 李宇峙, 邵腊根, 等. 厦门海沧大桥桥面沥青铺装层直道疲劳试验研究[J]. 中国公路学报, 2001, 14(1): 60-65.Zhang Qi-sen, Li Yu-shi, Shao La-gen, et al. Research on fatigue tests in the direct trackfor the asphalt deck pavement of Xiamen Haicang steel bridge[J]. China Journal of Highway and Transport, 2001, 14(1): 60-65. (in Chinese) [12] Paul A T, John WF. Full-scale fatigue tests of steel ortho-tropic decks for the Williamsburg bridge[J]. Journal of Bridge Engineering, 2003, 8(5): 323-333. [13] 陈先华, 黄卫, 王建伟, 等. 浇注式沥青混凝土铺装破坏原因[J]. 交通运输工程学报, 2004, 4(4): 5-9.Chen Xian-hua, Huang Wei, Wang Jian-wei, et al. Damage causes of mastic asphalt pavement on orthotropic steel deck plate[J]. Journal of Traffic and Transportation Engineering, 2004, 4(4): 5-9. (in Chinese) [14] 刘振清, 黄卫, 刘清泉, 等. 钢桥面沥青混合料铺装体系疲劳特性的损伤力学分析[J]. 土木工程学报, 2006, 39(2): 117-121.Liu Zhen-qing, Huang Wei, Liu Qing-quan, et al. Damage mechanics on the fatigue characteristics of asphalt mixture surfacing for steel bridge decks[J]. China Civil Engineering Journal, 2006, 39(2): 117-121. (in Chinese)