-
摘要: 为了考察异常事件对高速道路交通运行的影响, 对事发后高速道路局部交通状态的演变过程进行了分解, 分析了各阶段的事发点通行能力, 并将事发点通行能力的影响因素归纳为事件性质、阻塞行车道宽度、事件发生位置、现场行车秩序与上游交通量等五类, 针对交通事故引起局部车道临时关闭这一典型的异常事件, 进行微观交通仿真。仿真结果表明: 行车延误随着车道关闭开始大幅度增长, 直至车道开放, 之后开始降低, 整个演变过程伴随着波动; 当交通量接近于道路通行能力时, 交通流系统处于脆弱的平衡状态, 异常事件极易引起大范围、长时间的交通拥堵, 此时, 应采取交通诱导和匝道控制等必要的措施来转移部分交通量, 减小异常事件的影响。Abstract: In order to research the influence of incident on the traffic operation of expressway, the process of local traffic state during incident was disassembled, the capacity in each phase was analyzed, the affecting factors of the capacity were induced to incident feature, blocked width, incident position, travelling order and upstream traffic volume, and traffic microsimulation was carried out when accident results to the closure of some lanes.Simulation result shows that traffic delay increases quickly during the closure till the lanes are opened, then starts to decrease, there are some fluctuations in the whole process; when traffic volume approaches capacity, the balance of traffic system is weak, incident will arouse traffic congestion in large area and long time, some necessary measures, such as traffic routing and ramp control, should be adopted to divert traffic volume partially and reduce incident influence.
-
Key words:
- expressway /
- capacity /
- traffic incident /
- traffic simulation
-
表 1 仿真条件
Table 1. Simulation conditions
影响条件 条件改变设定 车道关闭持续时间T1 分4级, 即5、15、30与60 min 上游交通量 交通量分高、中、低3级: 高交通量, 设定上游主线流量为4 400 pcu·h-1, 入口匝道流入量为1 400 pcu·h-1; 中交通量, 设定上游主线流量为4 000 pcu·h-1, 入口匝道流入量为1 000 pcu·h-1; 低交通量, 设定上游主线流量为3 500 pcu·h-1, 入口匝道流入量为600 pcu·h-1。考虑到城市高速道路上大车比例很小(据抽样调查统计, 上海中心区申字型高架快速路上大车比例约为3%), 为了纯化问题, 仿真中设定所有运行车辆均为标准小汽车 应对措施 分3种情况: 不采取任何应对措施, 上游交通需求保持不变; 临时关闭该入口匝道; 同时进行信息诱导与匝道控制, 以实现流量转移。针对高交通量, 主线转移为10%, 匝道流入率为450 pcu·h-1; 针对中交通量, 主线转移为10%, 匝道流入率为400 pcu·h-1; 针对低交通量, 主线转移为5%, 匝道流入率为540 pcu·h-1。采取措施的时间范围均设定为比主线车道关闭迟启与迟断10 min -
[1] 乔向明, 徐安, 舒伟. 中国道路交通事故变化趋势预测[J]. 长安大学学报: 自然科学版, 2004, 24 (6): 64-66.Qiao Xiang-ming, Xu An, Shu Wei. Developing tendency forecast of road traffic accident in China[J]. Journal of Chang'an University: Natural Science Edition, 2004, 24 (6): 64-66. (in Chinese) [2] 樊小红, 荆便顺. 基于遗传算法的交通事件检测[J]. 长安大学学报: 自然科学版, 2005, 25 (4): 70-72.Fan Xiao-hong, Jing Bian-shun. Freeway automatic incident detection with genetic algorithm[J]. Journal of Chang'an University: Natural Science Edition, 2005, 25 (4): 70-72. (in Chinese) [3] 周钱, 陆化普, 徐薇. 交通事故规律及其模型[J]. 交通运输工程学报, 2006, 6 (4): 112-115.Zhou Qian, Lu Hua-pu, Xu Wei. Laws and models of traffic accidents[J]. Journal of Traffic and Transportation Engineering, 2006, 6 (4): 112-115. (in Chinese) [4] 刘伟铭, 管丽萍, 尹湘源. 基于决策树的高速公路事件持续时间预测[J]. 中国公路学报, 2005, 18 (1): 99-103.Liu Wei-ming, Guan Li-ping, Yin Xiang-yuan. Prediction of freeway incident duration based on decision tree[J]. China Journal of Highway and Transport, 2005, 18 (1): 99-103. (in Chinese) [5] Transportation Research Board. Highway Capacity Manual[M]. Washington DC: National Research Council, 2000. [6] PTVPlanung Transport Verkehr AG. VISSI M User Manual[M]. Karlsruhe: PTV Corporation, 2003. [7] 彭春露. 异常事件下城市快速道路交通状态预测与分析[D]. 上海: 同济大学, 2003. [8] Raub R A, Pfefer R C. Vehicular flow past incidents involving lane blockage on urban roads: a preliminary exploration[J]. Transportation Research Record, 1998, 1634: 86-92. [9] 荆便顺. 道路交通控制工程[M]. 北京: 人民交通出版社, 1995. [10] Banks J. Two-capacity phenomenon at freeway bottlenecks: a basis for ramp metering[J]. Transportation Research Record, 1991, 1320: 83-90. [11] Persaud B N. Exploration of the breakdown phenomenon in freeway traffic[J]. Transportation Research Record, 1998, 1634: 64-69.