-
摘要: 以三轴机车转向架构架为例, 建立其轮轨冲击的运动微分方程, 通过龙格-库塔积分法得到了轮轨冲击的载荷时间历程, 分析了轮轨动态冲击对构架疲劳寿命的影响。利用有限单元法建立了轮对、构架、车体的整体有限元模型, 采用瞬态动力学分析得到构架危险点的应力时间历程, 结合材料的S-N曲线以及疲劳损伤累积准则, 进行了构架的疲劳寿命计算, 得到轮轨低接头冲击下构架疲劳寿命。分析结果表明: 构架的应力响应并不与轮轨处的激励同时达到最大, 且在激励结束后有一较长的响应过程; 轮轨冲击对构架的疲劳影响较大, 尤其对轴箱弹簧座处的侧梁下盖板的寿命影响最为显著, 在25.0m轨长的错牙接头作用下, 其疲劳寿命为5.15×106km。Abstract: In order to analyze the effect of wheel-rail impact on the fatigue life of bogie frame, a bogie frame of a three-axle locomotive was taken as an example, the differential equation of wheel-rail impact was established, and the load history of wheel-rail impact was obtained by using Runge-Kutta formula. A finite element model consisting of wheelsets, bogie frame and carbody was established by using finite element method, the stress histories of different dangerous points on the frame were derived by using transient dynamics analysis technology, the S-N relations of 16 Mn material and fatigue damage cumulative rule were analyzed, and the fatigue life of the frame was calculated under the impact of wheel-rail tie-in. Analysis result shows that the stress response of the frame is not accordant with wheel-rail impact force to achieve the maximum value, but there is a longer response process after impacting; the influence of wheel-rail impact on the fatigue of bogie frame is great, especially, on the cover board of side-girder near axle box spring block, and the fatigue life of the frame is 5.15×106 km under its malocclusion joint for 25.0 m long track.
-
Key words:
- vehicle engineering /
- frame fatigue /
- transient dynamics analysis /
- wheel-rail impact
-
表 1 机车和轨道的基本参数
Table 1. Basic parameters of locomotive and track
车辆 轨道 名称 数值 名称 数值 车体质量2Mc/kg 90 850 胶垫刚度Kp/(MN·m-1) 120 构架质量Mf/kg 3 186 胶垫阻尼Cp/(kN·s·m-1) 75 轮对质量Mw/kg 2 836 轨枕间距a/mm 545 一系刚度Ks1 /(MN·m-1) 1.2 道床刚度Kb/(MN·m-1) 78.4 一系阻尼Cs1 /(kN·s·m-1) 78.5 道床阻尼Cb/(kN·s·m-1) 58.8 二系刚度Ks2/(MN·m-1) 15.0 错牙高度h/mm 5 二系阻尼Cs2/(kN·s·m-1) 0 车轮半径R/mm 525 表 2 疲劳寿命分析结果
Table 2. Analysis result of fatigue life
节点号 单元号 冲击次数 疲劳寿命/km 27312 36018 2.06×108 5.15×106 30582 43657 5.20×1014 1.30×1013 -
[1] Jenkins H H, Stephenson J E, Clayton G A, et al. The effect of track and vehicle parameters on wheel/rail vertical dynamic forces[J]. Railway Engineering Journal, 1974, 3(1): 2-6. [2] 李定清. 轮轨垂直相互动力作用及其动力响应[J]. 铁道学报, 1987, 9(1): 1-8. doi: 10.3321/j.issn:1001-8360.1987.01.001Li Ding-qing. Wheel/track vertical dynamic action and responses[J]. Journal of the China Rail way Society, 1987, 9(1): 1-8. (in Chinese) doi: 10.3321/j.issn:1001-8360.1987.01.001 [3] 许实儒. 铁路轨道基本理论[M]. 北京: 中国铁道出版社, 1996. [4] 翟婉明. 铁路车轮扁疤的动力学效应[J]. 铁道车辆, 1994, 32(7): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL407.000.htmZhai Wan-ming. Dynamics effect of wheel flat on rail way[J]. Rolling Stock, 1994, 32(7): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL407.000.htm [5] 翟婉明, 王其昌. 轮轨动力学分析模型研究[J]. 铁道学报, 1994, 16(1): 164-172.Zhai Wan-ming, Wang Qi-chang. A study on the analytical models for wheel/rail dynamics[J]. Journal of the China Rail way Society, 1994, 16(1): 164-172. (in Chinese) [6] 翟婉明. 车辆-轨道耦合动力学[M]. 第二版. 北京: 中国铁道出版社, 2002. [7] 王建斌, 邬平波, 唐兆. 车轮扁疤引发附加冲击力对车轴应力谱影响的研究[J]. 铁道学报, 2006, 28(1): 39-43. doi: 10.3321/j.issn:1001-8360.2006.01.009Wang Jian-bin, Wu Ping-bo, Tang Zhao. Research on the axle stress spectrum considering extra wheelflat impact forces[J]. Journal of the China Rail way Society, 2006, 28(1): 39-43. (in Chinese) doi: 10.3321/j.issn:1001-8360.2006.01.009 [8] 练松良, 刘富. 轨道刚度变化对轮轨冲击载荷的动力影响[J]. 同济大学学报: 自然科学版, 2002, 30(4): 427-430. doi: 10.3321/j.issn:0253-374X.2002.04.009Lian Song-liang, Liu Fu. Effect of track stiffness uneven on wheel/rail impact load[J]. Journal of Tongji University: Natural Science, 2002, 30(4): 427-430. (in Chinese) doi: 10.3321/j.issn:0253-374X.2002.04.009 [9] Haiba M, Barton D C, Books P C, et al. Review of life assessment techniques applied to dynamically loaded automotive components[J]. Computers and Structures, 2002, 80: 481-494. [10] 童大埙. 铁路轨道基本知识[M]. 第三版. 北京: 中国铁道出版社, 1996.