Thermoelectric field model of microwave hot in-place recycling for asphalt pavements
-
摘要: 为了提高微波加热沥青混合料内辐射电场的效率及温度场分布的均匀性, 应用惠更斯原理对基本面元辐射场积分建立了微波加热装置的辐射电场数学模型, 运用能量守恒原理确定了辐射口面处沥青混合料的温度场数学模型, 分析了结构参数及介质物性对热电场的影响。根据天线近场辐射理论对天线E面及H面长度进行了优化设计, 应用不同长度的两种天线进行微波加热试验, 测出了各自口面温度场分布并进行了计算机模拟。结果发现: 用符合长度准则的天线加热后沥青混合料大部分区域温度为75℃~90℃, 仅在口面周边位置温度略有下降, 而用另一种天线加热后局部区域达到130℃以上, 而大部分区域温度则在70℃以下。可见使用前一种天线加热后温度分布更均匀, 具有更高的加热效率, 从而验证了热电场模型的正确性和结构优化的有效性。Abstract: In order to improve the efficiency of radiation electric field and the distribution uniformity of temperature field in microwave heating for asphalt mixtures, the radiation field integrals of basic surface elements were computed, a mathematic model of radiation electric field for microwave heating device was built by using Huygens' principle, a mathematic model of temperature field for asphalt mixtures in front of radiation surface was established by using the law of energy conservation, and the influences of structure parameters and media physical properties on thermoelectric field were analyzed. The lengths of antennas in E-plane and H-plane were optimized by using the theories of antenna near-field radiation, microwave heating experiments were made for two kinds of antennas with different lengths in E-plane and H-plane, and the temperature fields were simulated. Simulation result indicates that the temperatures of asphalt mixtures in most regions are from 75 ℃ to 90 ℃ and decline slightly around the periphery when using the antenna in accordance with the length principle; however, the temperatures are over 130 ℃ in local regions and under 70 ℃ in most regions when using the other antenna. Obviously, the temperature field is more homogeneously and the heating efficiency is improved by using the former antenna, which demonstrates the accuracy of thermoelectric field model and the availability of structure optimization.
-
表 1 结构参数
Table 1. Structure parameters
cm 喇叭天线 R1 R2 D1 D2 Ⅰ 43 32 15 12 Ⅱ 61 48 15 12 表 2 温度数据1
Table 2. Temperature data 1
℃ 网格号 1 2 3 4 5 6 7 8 9 10 1 52.6 63.8 71.4 77.2 79.6 71.8 70.6 61.4 57.4 45.8 2 72.4 83.6 86.4 88.6 86.8 79.8 75.8 72.4 74.2 62.2 3 82.2 92.0 94.4 91.4 85.8 83.8 84.8 87.2 84.8 68.6 4 82.2 90.4 92.4 89.2 84.8 82.6 84.8 87.8 87.4 76.2 5 69.2 79.4 82.6 84.2 83.4 80.2 82.2 81.8 75.4 63.8 6 57.2 64.8 71.6 74.2 75.6 74.4 76.2 70.2 65.8 51.0 7 46.8 52.6 56.8 61.2 63.2 62.2 61.8 56.2 47.8 35.8 8 33.4 35.0 39.2 39.4 43.4 37.8 37.4 39.2 31.2 25.2 表 3 温度数据2
Table 3. Temperature data 2
℃ 网格号 1 2 3 4 5 6 7 8 9 10 1 69.0 85.2 85.4 83.2 84.2 56.4 46.2 38.2 31.6 26.0 2 103.6 121.6 122.2 106.6 95.2 63.4 56.4 38.4 32.8 26.4 3 110.2 138.2 136.3 122.2 96.2 63.8 51.6 42.4 31.4 28.4 4 111.6 128.0 131.2 114.6 92.6 62.6 53.4 41.0 33.0 28.8 5 91.6 111.2 110.8 105.6 103.4 67.4 49.8 38.6 33.6 27.6 6 72.2 84.4 87.4 82.0 72.4 56.8 47.2 39.4 31.6 26.0 7 53.8 64.2 63.4 61.6 60.2 48.6 35.2 36.2 29 25.2 8 31.4 35.2 40.0 34.4 34.2 32.4 26.8 26.4 23.6 22.0 -
[1] 戴强民. 公路施工机械[M]. 北京: 人民交通出版社, 2001. [2] 张永清, 贾双盈. 高等级公路沥青路面性能评价方法[J]. 长安大学学报: 自然科学版, 2005, 25 (2): 11-15. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200502002.htmZhang Yong-qing, Jia Shuang-ying. Evaluation method for asphalt pavement performance of freeway[J]. Journal of Chang an University: Natural Science Edition, 2005, 25 (2): 11-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200502002.htm [3] 袁海军, 张钧, 黄广连. 微波加热与远红外加热均匀性实验研究[J]. 国防科技大学学报, 1998, 20 (3): 106-109. https://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ803.022.htmYuan Hai-jun, Zhang Jun, Huang Guang-lian. Experi mental study on heating uniformity of microwave and far infrared radiation[J]. Journal of National University of Defense Technology, 1998, 20 (3): 106-109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ803.022.htm [4] 周海波, 宋德朝. 沥青路面就地热再生机组热风加热系统的研究[J]. 同济大学学报: 自然科学版, 2004, 32 (5): 668-671. doi: 10.3321/j.issn:0253-374X.2004.05.024Zhou Hai-bo, Song De-chao. Research of hot wind hotted-systemin asphalt road surface hot reproducer on spot[J]. Journal of Tongji University: Natural Science, 2004, 32 (5): 668-671. (in Chinese) doi: 10.3321/j.issn:0253-374X.2004.05.024 [5] 候睿, 黄晓明, 李海军. 再生工艺对热再生沥青混合料低温抗裂性能的影响[J]. 公路交通科技, 2007, 24 (3): 10-14. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200703002.htmHou Rui, Huang Xiao-ming, Li Hai-jun. Influence of recy-cling technology on hot-recycled asphalt mixture's low temperature anti-cracking performace[J]. Journal of Highway and Transportation Research and Development, 2007, 24 (3): 10-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200703002.htm [6] Shoenberger J E, Demoss T A. Hot-mix recycling of asphalt concrete airfield pavements[J]. International Journal of Pavement Engineering, 2005, 6 (1): 17-26. [7] Wu X, Thomas J R, Davis WA. Control of thermal runaway in microwave resonant cavities[J]. Journal of Applied Physics, 2002, 92 (6): 3374-3380. doi: 10.1063/1.1501744 [8] 朱松青, 史金飞, 王鸿翔. 沥青路面现场微波加热再生模型与实验[J]. 东南大学学报: 自然科学版, 2006, 36 (3): 393-396. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX200603011.htmZhu Song-qing, Shi Jin-fei, Wang Hong-xiang. Modeling and experi ment for hot in-place recycling of microwave heating of asphalt pavements[J]. Journal of Southeast University: Natural Science Edition, 2006, 36 (3): 393-396. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX200603011.htm [9] Cuccurullo G, Berardi P G, Carfagna R, et al. IR temperature measurement in microwave heating[J]. Infrared Physics & Technology, 2002, 43 (3-5): 145-150. [10] Yuan Qiao-wei, Chen Qiang, Sawaya K. Performance of adaptive array antenna with arbitrary geometry in the presence of mutual coupling[J]. IEEE Transactions on Antennas and Propagation, 2006, 154 (7): 1991-1996.