-
摘要: 为了保障飞行安全, 对终端区着陆飞机进行有效的排序, 建立了以航班延误总时间最小为目标函数的规划模型, 以人工鱼群算法为基础, 融合了遗传算法的选择操作和模拟退火算法的依概率接受的思想, 形成混合人工鱼群算法, 对着陆飞机排序问题进行了仿真计算, 并与先到先服务算法、模拟退火算法以及蚁群算法进行了对比研究。仿真结果表明: 与先到先服务相比, 使用人工鱼群算法使得单跑道、双跑道延误分别减少了9.3%和48.0%, 计算时间小于3s;与蚁群算法和模拟退火算法相比, 求解的延误与时间最小, 因此, 提出的混合算法可行。Abstract: In order to ensure flight safety and effectively sequence landing aircrafts in terminal area, an object model with minimum total delay was developed, the ideas of selection operation in genetic algorithm (GA) and the acceptance according to probability in simulated annealing (SA) algorithm were considered, a mixed algorithm was proposed based on artificial fish school algorithm (AFSA), the sequence problem of landing aircraft was solved, and its computational result was compared with the ones computed by first-come-first-serve (FCFS) algorithm, SA algorithm and ant colony optimization (ACO) algorithm. Simulation result shows that the total delays are respectively reduced by 9.3% and 48.0% for single and double runways compared with FCFS algorithm, computational time is less than 3 s, while the delay and computational time are least compared with SA algorithm and ant colony optimization algorithm, so the mixed algorithm (MA) is feasible.
-
Key words:
- air traffic control /
- flow management /
- AFSA /
- aircraft sequencing /
- terminal area
-
表 1 单跑道排序仿真结果
Table 1. Sequencing simulation results at single runway
飞机代码 FCFS MA E (i) /min S (i) /min E (i) /min S (i) /min HC2 6.0 6.0 6.0 6.0 HC3 6.0 7.0 6.0 7.0 HC7 6.0 8.0 6.0 8.0 HC8 6.0 9.0 6.0 9.0 HC5 7.0 10.0 7.0 10.0 SC4 9.0 12.0 9.0 13.0 SC9 9.0 13.0 9.0 14.0 HC0 11.0 14.0 11.0 11.0 LC1 15.0 15.5 15.0 15.0 LC6 15.0 17.0 15.0 16.5 总延误/min 21.5 19.5 表 2 双跑道排序仿真结果
Table 2. Sequencing simulation results at double runways
FCFS MA 跑道1 跑道2 跑道1 跑道2 代码 E* (i) /min S (i) /min 代码 E* (i) /min S (i) /min 代码 E* (i) /min S (i) /min 代码 E* (i) /min S (i) /min HC2 6.0 6.0 HC5 6.0 6.0 HC2 6.0 6.0 HC5 6.0 6.0 HC3 6.0 7.0 HC0 10.0 10.0 HC3 6.0 7.0 HC7 6.0 7.0 HC7 6.0 8.0 总延误为12.5 min SC4 9.0 9.0 HC8 6.0 8.0 HC8 6.0 9.0 SC9 9.0 10.0 HC0 10.0 10.0 SC4 9.0 11.0 LC1 15.0 15.0 总延误为6.5 min SC9 9.0 12.0 LC6 15.0 16.5 LC1 15.0 15.0 LC6 15.0 16.5 表 3 算法仿真性能比较
Table 3. Comparison of simulation performances for 4 algorithms
单跑道 双跑道 算法 最优解/min 最差解/min 平均解/min 平均计算时间/s 最优解/min 最差解/min 平均解/min 平均计算时间/s FCFS 21.5 21.5 21.5 0.396 12.5 12.5 12.5 0.988 ACO 19.5 21.5 19.5 2.850 6.5 9.0 7.0 3.165 SA 19.5 23.5 21.5 0.697 7.0 23.5 10.5 12.398 MA 19.5 19.5 19.5 0.667 6.5 7.0 6.5 2.084 -
[1] Beasley J E, Krishnamoorthy M, Sharaiha Y M, et al. Scheduling aircraft landings—the static case[J]. Transportation Science, 2000, 34 (2): 180-197. doi: 10.1287/trsc.34.2.180.12302 [2] 胡明华, 李丹阳, 韩松臣. 被动空中交通流量管理中的动态排序算法[J]. 南京航空航天大学学报, 2000, 32 (1): 85-90. doi: 10.3969/j.issn.1005-2615.2000.01.016Hu Ming-hua, Li Dan-yang, Han Song-chen. Dynamic queue algorithmin passive air traffic flow management[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2000, 32 (1): 85-90. (in Chinese) doi: 10.3969/j.issn.1005-2615.2000.01.016 [3] 徐肖豪, 黄宝军. 终端区飞机排序的模糊综合评判方法研究[J]. 航空学报, 2001, 22 (3): 259-261. doi: 10.3321/j.issn:1000-6893.2001.03.008Xu Xiao-hao, Huang Bao-jun. Study of fuzzy integrated judge method applied to the aircraft sequencing in the terminal area[J]. Acta Aeronautica et Astronautica Sinica, 2001, 22 (3): 259-261. (in Chinese) doi: 10.3321/j.issn:1000-6893.2001.03.008 [4] 杨晓嘉, 李志蜀, 吴振亚. 航空器着陆时间动态分配算法[J]. 中国民航飞行学院学报, 2001, 12 (4): 29-31. doi: 10.3969/j.issn.1009-4288.2001.04.002Yang Xiao-jia, Li Zhi-shu, Wu Zhen-ya. Dynamic allocation algorithmof aircraft landing time[J]. Journal of Civil Aviation Flight University of China, 2001, 12 (4): 29-31. (in Chinese) doi: 10.3969/j.issn.1009-4288.2001.04.002 [5] 丁峰, 贺尔铭, 吴盘龙. 空中交通自动化管理中飞机等待队列的排序算法[J]. 西北工业大学学报, 2001, 19 (3): 456-460. doi: 10.3969/j.issn.1000-2758.2001.03.032Ding Feng, He Er-ming, Wu Pan-long. Optimal-window algorithm for scheduling arrival aircraft[J]. Journal of North-western Polytechonical University, 2001, 19 (3): 456-460. (in Chinese) doi: 10.3969/j.issn.1000-2758.2001.03.032 [6] 徐肖豪, 姚源. 遗传算法在终端区飞机排序中的应用[J]. 交通运输工程学报, 2004, 4 (3): 121-126. doi: 10.3321/j.issn:1671-1637.2004.03.029Xu Xiao-hao, Yao Yuan. Application of genetic algorithm to aircraft sequencing in terminal area[J]. Journal of Traffic and Transportation Engineering, 2004, 4 (3): 121-126. (in Chinese) doi: 10.3321/j.issn:1671-1637.2004.03.029 [7] 李志荣, 张兆宁. 基于蚁群算法的航班着陆排序[J]. 交通运输工程与信息学报, 2006, 4 (2): 66-19.Li Zhi-rong, Zhang Zhao-ning. Prioritizing landing flights based on ACS[J]. Journal of Transportation Engineering and Information, 2006, 4 (2): 66-69. (in Chinese) [8] 孙宏, 张翔, 徐杰. 应用模拟退火算法求解飞机调度问题[J]. 飞行力学, 2006, 24 (4): 84-87.Sun Hong, Zhang Xiang, Xu Jie. Applying the simulated annealing algorithmto solve airliner aircraft dispatching problem[J]. Flight Dynamics, 2006, 24 (4): 84-87. (in Chinese) [9] 李晓磊. 一种新型的智能优化方法——人工鱼群算法[D]. 杭州: 浙江大学, 2003. [10] 李晓磊, 薛云灿, 路飞, 等. 基于人工鱼群算法的参数估计[J]. 山东大学学报: 工学版, 2004, 34 (3): 84-87.Li Xiao-lei, Xue Yun-can, Lufei, et al. Parameter esti mation method based on artificial fish school algorithm[J]. Journal of Shandong University: Engineering Science, 2004, 34 (3): 84-87. (in Chinese) [11] 李晓磊, 钱积新. 基于分解协调的人工鱼群优化算法研究[J]. 电路与系统学报, 2003, 8 (1): 1-6.Li Xiao-lei, Qian Ji-xin. Studies on artificial fish swarmopti-mization algorithm based on decomposition and coordination techniques[J]. Journal of Circuits and Systems, 2003, 8 (1): 1-6. (in Chinese) [12] 李晓磊, 路飞, 田国会, 等. 组合优化问题的人工鱼群算法应用[J]. 山东大学学报: 工学版, 2004, 34 (5): 64-67.Li Xiao-lei, Lu Fei, Tian Guo-hui, et al. Applications of artificial fish school algorithm in combinatorial optimization problems[J]. Journal of Shandong University: Engineering Science, 2004, 34 (5): 64-67. (in Chinese)
计量
- 文章访问数: 266
- HTML全文浏览量: 85
- PDF下载量: 573
- 被引次数: 0