Mechanical behaviors of cement concrete pavement structure under impact rolling load
-
摘要: 为了揭示冲击碾压动荷载下水泥混凝土路面结构的力学行为, 基于动力三维有限元分析方法, 考虑材料的弹塑性, 拟定纵横板边、板中及板角4种典型荷载位置, 在四楞冲击压路机冲击碾压水泥混凝土路面时, 分析了路面各层结构的受力和变形特征。研究发现, 各工况下混凝土板底部承受纵、横向弯拉应力是旧面板破裂的主要原因, 基层与旧面板一起处于双向弯拉状态, 土基三向受压, 不同工况存在不同的有效影响深度。冲击碾压板角时, 路面板竖向位移最大, 影响深度最深; 而冲击板中位置时, 板竖向位移最小, 分布最均匀, 此时板体以纵向弯拉为主, 易形成横向裂缝; 当冲击纵向板边时, 板体以横向弯拉为主, 易形成纵向裂缝。可见, 路面破碎效果是地基刚度、冲击能量与冲击位置的综合函数, 建议基于具体路况选择相应的施工方案。Abstract: In order to explain the mechanical behaviors of cement concrete pavement structure under impact rolling load, four typical loading positions were considered such as slab longitudinal side, slab transverse side, slab corner and slab center, the stress and deformation characteristics of pavement structures under the impact load of quadrilateral impact roller were studied based on 3D elastic-plastic dynamic finite element method.Analysis result indicates that the main reasons of old cement concrete pavement cracking in different cases are that the bottom of cement concrete pavement bears longitudinal flexural-tensile stress and transverse flexural-tensile stress, both base course and old slab appear flexural-tensile state in two directions, while subgrade is in three dimension compressive stage, and the effective influence depths are different in different cases.The vertical displacements of slab and influence depths are maximum when the load locates at slab corner, while the vertical displacements of slab are minimum and uniform when the load locates at slab center.Pavement slab is in longitudinal bending stage and easily forms transverse cracks when the load locates at slab center, while pavement slab is in transverse bending stage and easily forms longitudinal cracks when the load locates at slab side.So the cracking effect is a synthetic function of foundation stiffness, impact energy and impact location, it is reasonable that constructing scheme is chosen according to different road conditions.
-
表 1 混凝土物理力学参数
Table 1. Physical and mechanical parameters of concrete
弹性模量/MPa 泊松比 密度/(kg·m-3) 剪胀角/(°) 初始屈服压应力/MPa 极限压应力/MPa 屈服拉应力/MPa 31 200 0.15 2 500 36.31 130 24.1 2.9 表 2 基层与土基材料参数
Table 2. Material parameters of base course and subgrade
参数 弹性模量/MPa 泊松比 密度/(kg·m-3) 摩擦角/(°) 内聚力/MPa 屈服应力/MPa 形状参数 材料参数 材料常数 硬化参数/MPa 塑性体积应变 基层 1 250 0.25 2 300 41.3 1.53 1.31 0.0 0.33 1.0 2.73.5 0.000.02 土基 25 0.35 1 750 36.5 0.06 0.90 0.0 0.33 1.0 1.22.5 0.000.02 -
[1] 唐学军, 苏卫国. 冲击压实旧混凝土路面路基的力学行为研究[J]. 岩土工程学报, 2004, 26(6): 804-808. doi: 10.3321/j.issn:1000-4548.2004.06.015TANG Xue-jun, SU Wei-guo. Analysis on mechanical behaviors of existing cement-concrete pavement and soil subgrade in the process of impact compaction[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(6): 804-808. (in Chinese) doi: 10.3321/j.issn:1000-4548.2004.06.015 [2] 唐学军, 苏卫国. 路基刚度对冲击压实旧混凝土路面力学行为的影响分析[J]. 土木工程学报, 2006, 39(4): 121-126. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200604024.htmTANG Xue-jun, SU Wei-guo. Influence of subgrade moduluson the mechanical behavior of existing impact-compacted concrete pavement[J]. China Civil Engineering Journal, 2006, 39(4): 121-126. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200604024.htm [3] 刘荥, 黄晓明, 刘效尧. 冲击破碎混凝土路面的三维叠层模型[J]. 交通运输工程学报, 2005, 5(1): 11-13. http://transport.chd.edu.cn/article/id/200501003LIU Ying, HUANG Xiao-ming, LIU Xiao-yao. 3-D over laymodel of broken concrete pavement[J]. Journal of Traffic and Transportation Engineering, 2005, 5(1): 11-13. (in Chinese) http://transport.chd.edu.cn/article/id/200501003 [4] 胡昌斌, 孙晓亮. 冲击压实破碎旧水泥混凝土路面施工对盖板涵影响的研究[J]. 公路, 2007, 52(2): 11-16. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200702003.htmHU Chang-bin, SUN Xiao-liang. Research on influence of impact compaction technology in rehabilitating engineering onorthogonal slab culver[J]. Highway, 2007, 52(2): 11-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200702003.htm [5] 胡昌斌, 孙晓亮. 冲击压实破碎旧水泥混凝土路面施工技术试验研究[J]. 公路, 2007, 52(1): 179-187. doi: 10.3969/j.issn.0451-0712.2007.01.041HU Chang-bin, SUN Xiao-liang. Test research on controlstandard of rehabilitating cement concrete pavement with impact compaction technology[J]. Highway, 2007, 52(1): 179-187. (in Chinese) doi: 10.3969/j.issn.0451-0712.2007.01.041 [6] 孙晓亮, 胡昌斌. 四楞冲击压路机破碎旧水泥混凝土路面力学机理研究[J]. 福州大学学报: 自然科学版, 2007, 35(2): 281-287. doi: 10.3969/j.issn.1000-2243.2007.02.027SUN Xiao-liang, HUChang-bin. Study on mechanical behaviorsof existing cement-concrete pavement in process of impact compaction with quadrilateral impactor roller[J]. Journal of Fuzhou University: Natural Science Edition, 2007, 35(2): 281-287. (in Chinese) doi: 10.3969/j.issn.1000-2243.2007.02.027 [7] 石刚, 支喜兰, 谢永利, 等. 冲击压实和强夯加固地基效果分析[J]. 交通运输工程学报, 2006, 6(4): 52-56. http://transport.chd.edu.cn/article/id/200604012SHI Gang, ZHI Xi-lan, XIE Yong-li, et al. Effect analysis of percussive compaction and dynamic compaction on roadbed reinforcement[J]. Journal of Traffic and Transportation Engineering, 2006, 6(4): 52-56. (in Chinese) http://transport.chd.edu.cn/article/id/200604012 [8] 景宏君, 张斌. 黄土地区公路路基冲击压实试验[J]. 长安大学学报: 自然科学版, 2004, 24(1): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200401007.htmJI NG Hong-jun, ZHANG Bin. Experiments of highway subgrade impact compaction in loess region[J]. Journal of Chang an University: Natural Science Edition, 2004, 24(1): 25-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200401007.htm [9] LEEJ, FENVES G L. A plastic-damage concrete model for earthquake analysis of dams[J]. Earthquake Engineering and Structural Dynamics, 1998, 27(9): 937-956. [10] LUBLINERJ, OLIVER J, OLLER S, et al. A plastic-damage model for concrete[J]. International Journal of Solids and Structures, 1989, 25(3): 299-326.