-
摘要: 为揭示钢桥面沥青混凝土铺装裂缝行为机理, 分析了铺装层疲劳裂缝扩展阻力曲线, 利用复合梁疲劳试验数据, 采用三维有限元方法, 研究了铺装层裂缝启裂、扩展直至失稳的全过程。结果表明: 疲劳裂缝扩展阻力曲线形式与材料类型和“铺装层+钢板”复合结构有关系; 当天然初始裂缝长度为0时, 疲劳裂缝扩展一般存在3个阶段: 起始扩展区、稳态扩展区和失稳扩展区, 此时复合梁的疲劳寿命接近800万次; 当初始裂缝长度为10 mm时, 疲劳裂缝扩展直接进入失稳扩展区, 疲劳寿命约为200万次; 裂缝增长率与荷载作用次数之间存在良好的非线性关系。可见, 钢桥面铺装层宜选用空隙率小、易密实的铺装材料, 同时可根据荷载作用次数推断出铺装层疲劳裂缝的状态。Abstract: In order to discover the crack mechanism of asphalt pavement on steel deck, the resistance curve of fatigue crack propagation was simulated, the whole process of crack beginning, propagation and instability was analyzed based on 3D finite element method and experiment data.Analysis result shows that the form of resistance curve depends on the type of material and the composite beam of pavement and steel plate.When the natural crack length is 0, the propagation of fatigue crack has 3 phases such as initial propagation zone, stable propagation zone and unstable propagation zone, and the total fatigue life almost reaches 8 million times; when the natural crack length is 10 mm, the propagation of fatigue crack in asphalt pavement may start from unstable propagation zone, the total fatigue life may be 2 million times; there is a good nonlinear relationship between crack increment ratio and loading times.So for steel deck pavement, the materials with little porosity and good dense degree should be selected, and fatigue crack propagation phase can be judged by loading times.
-
Key words:
- bridge engineering /
- deck pavement /
- fatigue crack propagation /
- numerical analysis
-
表 1 疲劳试验及力学计算结果
Table 1. Results of fatigue test and mechanical calculation
疲劳荷载/kN 动挠度/mm 静挠度/mm 作用次数N/万次 拉应力σx/MPa 拉应变εx/10-6 层间剪应力τxy/MPa 6 0.20 0.38 1 200 1.359 2 2 216.2 0.320 61 8 0.24 — 200 1.812 3 2 955.0 0.427 50 10 0.18~0.25 — 49 2.265 4 3 693.7 0.534 36 12 0.28~0.40 — 9 2.718 5 4 432.5 0.641 25 表 2 疲劳方程及回归系数
Table 2. Fatigue equations and regression coefficients
N=A1σ-c1 N=A2ε-c2 N=A3τxy-c3 A1 c1 相关系数R2 A2 c2 相关系数R2 A3 c3 相关系数R2 8 176.3 6.252 3 0.987 0 9.934 6.252 5 1.000 0.978 8 6.251 8 0.999 0 表 3 计算参数
Table 3. Calculation parameters
钢板模量/MPa 铺装层模量/MPa 铺装层厚度/mm 初始裂缝长度a0/mm 初始裂缝位置 210 000 2 000 55 0、5、10 层表 -
[1] MEDANI T O. Asphalt surfacing applied to orthotropic steel bridge decks[R]. Delf: Delf University of Technology, 2001. [2] MEDANI T O. Towards a newdesign philosophy for asphalt surfacing on orthotropic steel decks[R]. Delf: Delf University ofTechnology, 2001. [3] HIMENO K. Longitudinal surface cracking in asphalt pavements on steel bridge decks related to dissipated energy[C]//Chuo University. 2nd Workshop on Pavement Technologies. Tokyo: Chuo University, 2003: 178-184. [4] MONISMITHC L, Coetzee NF. Reflection cracking: laboratory studies and design considerations[C]//Association of Asphalt Paving Technologists. Proceedings of the Association of Asphalt Paving Technologists. Florida: Association of Asphalt Paving Technologists, 1980: 330-360. [5] MAJIDZADEH K, RAMSAMOOJ D V. Mechanistic approach to the solution of cracking in pavements[R]. Washington DC: Transportation Research Board, 1973. [6] MAJIDZADEH K, KAUFMANN E M. Application of frac-ture mechanics in the analysis of pavement fatigue[C]//Association of Asphalt Paving Technologists. Proceedings ofthe Association of Asphalt Paving Technologists. California: Association of Asphalt Paving Technologists, 1971: 310-336. [7] SALAM Y M, MONISMITH C L. Fracture characteristics of asphalt concrete[C]//Association of Asphalt Paving Technologists. Proceedings of the Association of Asphalt Paving Technologists. Colorado: Association of Asphalt Paving Technologists, 1972: 293-317. [8] RAMSAMOOJ D V, MAJIDZADEH K, KAUFMANN E M. The analysis and design of the flexibility of pavements[C]//University of Michigan. Proceedings of the 3rd International Conference on Structural Design of Asphalt Pavements. London: University of Michigan, 1972: 415-462. [9] 赵志方, 徐世烺. 混凝土裂缝扩展阻力曲线[J]. 三峡大学学报: 自然科学版, 2002, 24(1): 19-25. https://www.cnki.com.cn/Article/CJFDTOTAL-WHYC200201004.htmZHAO Zhi-fang, XU Shi-lang. Grack extension resistance curve of concrete[J]. Journal of China Three Gorges University: Natural Science, 2002, 24(1): 19-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHYC200201004.htm [10] 吴智敏, 赵国藩. 混凝土试件缝高比对裂缝扩展过程及断裂韧度的影响[J]. 应用基础与工程科学学报, 1995, 3(2): 126-130. https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX199502002.htmWU Zhi-min, ZHAO Guo-fan. Influences of relative crack length a0/h of concrete specimens on crack propagation process and fracture toughness[J]. Journal of Basic Science and Engineering, 1995, 3(2): 126-130. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX199502002.htm [11] SUMPTER J D G. An alternative view of Rcurve testing[J]. Engineering Fracture Mechanics, 1999, 64(2): 161-176. [12] 东南大学, 南京长江第二大桥建设指挥部. 南京长江第二大桥钢桥面环氧沥青混凝土铺装技术及应用[R]. 南京: 东南大学, 南京长江第二大桥建设指挥部, 2000. [13] 刘振清. 大跨径钢桥桥面铺装设计关键技术研究[D]. 南京: 东南大学, 2003. [14] 黄仰贤. 路面分析与设计[M]. 余定选, 齐诚, 译. 北京: 人民交通出版社, 1998.