留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水泥混凝土路面早龄期温度场性状与控制方法

胡昌斌 孙增华 王丽娟

胡昌斌, 孙增华, 王丽娟. 水泥混凝土路面早龄期温度场性状与控制方法[J]. 交通运输工程学报, 2013, 13(5): 1-9.
引用本文: 胡昌斌, 孙增华, 王丽娟. 水泥混凝土路面早龄期温度场性状与控制方法[J]. 交通运输工程学报, 2013, 13(5): 1-9.
HU Chang-bin, SUN Zeng-hua, WANG Li-juan. Characteristic and control method of early-age temperature field for cement concrete pavement[J]. Journal of Traffic and Transportation Engineering, 2013, 13(5): 1-9.
Citation: HU Chang-bin, SUN Zeng-hua, WANG Li-juan. Characteristic and control method of early-age temperature field for cement concrete pavement[J]. Journal of Traffic and Transportation Engineering, 2013, 13(5): 1-9.

水泥混凝土路面早龄期温度场性状与控制方法

基金项目: 

国家自然科学基金项目 50908056

详细信息
    作者简介:

    胡昌斌(1974-), 男, 湖北孝感人, 福州大学教授, 工学博士, 从事道路工程研究

  • 中图分类号: U416.216

Characteristic and control method of early-age temperature field for cement concrete pavement

More Information
    Author Bio:

    HU Chang-bin(1974-), male, professor, PhD, +86-591-22865355, huchangbin@qq.com

  • 摘要: 提出了基于水泥混凝土路面温度应力、固化基础温度、固化温度差和养生温度的早龄期温度场控制原则, 采用专用水泥混凝土路面早龄期温度场数值模拟程序, 进行了路面早龄期温度场参数的敏感性和影响特性分析, 评估了路面早龄期温度场控制措施的有效性。分析结果表明: 与材料参数相比, 环境施工参数是影响路面早龄期温度特征的主要因素; 选择合适的铺筑时刻、环境条件可使板顶板底温度差改变达20℃; 采用恰当的养护方式和养护材料可降低路面板温度12℃以上; 混凝土摊铺温度、水灰比和水泥用量对固化基础温度影响显著; 对于特定温度控制指标, 各影响参数敏感性并不相同, 需结合现场路面板早龄期温度仿真平衡措施影响。

     

  • 图  1  环境温度对路面板早龄期温度的影响

    Figure  1.  Effect of ambient temperature on slab early-age temperature

    图  2  环境温度对板顶板底温度差的影响

    Figure  2.  Effect of ambient temperature on slab temperature difference

    图  3  太阳辐射对路面板早龄期温度的影响

    Figure  3.  Effect of solar radiation on slab early-age temperature

    图  4  太阳辐射对板顶板底温度差的影响

    Figure  4.  Effect of solar radiation on slab temperature difference

    图  5  风速对路面板早龄期温度的影响

    Figure  5.  Effect of wind speed on slab early-age temperature

    图  6  风速对板顶板底温度差的影响

    Figure  6.  Effect of wind speed on slab temperature difference

    图  7  铺筑时间对路面板温度场的影响

    Figure  7.  Effect of paving time on slab temperature field

    图  8  不同铺筑时间路面板温度的发展

    Figure  8.  Slab temperature developments at different paving times

    图  9  铺筑时间对板顶板底温度差的影响

    Figure  9.  Effect of paving time on slab temperature difference

    图  10  蒸发速率对路面板早龄期温度的影响

    Figure  10.  Effect of water evaporation rate on slab early-age temperature

    图  11  不同养护方式下路面板早龄期温度的发展

    Figure  11.  Developments of slab early-age temperatures under different curing methods

    图  12  蒸发速率对板顶板底温度差的影响

    Figure  12.  Effect of water evaporation rate on slab temperature difference

    图  13  混凝土初始温度对路面板早龄期温度的影响

    Figure  13.  Effect of concrete initial temperature on slab early-age temperature

    图  14  混凝土初始温度对板顶板底温度差的影响

    Figure  14.  Effect of concrete initial temperature on slab temperature difference

    图  15  水泥类型对路面板早龄期温度的影响

    Figure  15.  Effect of cement type on slab early-age temperature

    图  16  水泥类型对板顶板底温度差的影响

    Figure  16.  Effect of cement type on slab temperature difference

    图  17  水灰比对路面板早龄期温度的影响

    Figure  17.  Effect of water cement ratio on slab early-age temperature

    图  18  水灰比对板顶板底温度差的影响

    Figure  18.  Effect of water cement ratio on slab temperature difference

    表  1  主要变量

    Table  1.   Main variables

    下载: 导出CSV

    表  2  各参数敏感性

    Table  2.   Sensitivity of each parameter

    下载: 导出CSV

    表  3  各参数对路面板固化温度影响

    Table  3.   Effect of each parameter on built-in temperature of slab

    下载: 导出CSV

    表  4  降低路面板早龄期温度的措施和效果

    Table  4.   Countermeasures reducing slab early-age temperature and effects

    下载: 导出CSV

    表  5  降低板顶板底温度差的措施和效果

    Table  5.   Countermeasures reducing slab temperature difference and effects

    下载: 导出CSV
  • [1] SCHINDLER A K, DOSSEY T, MCCULLOUGH B F. Temperature control during construction to improve the long term performance of Portland cement concrete pavements[R]. Austin: The University of Texas at Austin, 2002.
    [2] SCHINDLER A K, RUIZ J M, RASMUSSEN R O, et al. Concrete pavement temperature prediction and case studies with the FHWA HIPERPAV models[J]. Cement and Concrete Composites, 2004, 26 (5): 463-471. doi: 10.1016/S0958-9465(03)00075-1
    [3] YI S T, MOON Y H, KIM J K. Long-term strength prediction of concrete with curing temperature[J]. Cement and Concrete Research, 2005, 35 (10): 1961-1969. doi: 10.1016/j.cemconres.2005.06.010
    [4] RAO C, BARENBERG E J, SNYDER M B, et al. Effects of temperature and moisture on the response of jointed concrete pavements[C]∥International Society for Concrete Pavements. 7th International Conference on Concrete Pavements. Orlando: International Society for Concrete Pavements, 2001: 23-38.
    [5] KUO C M. Effective temperature differential in concrete pavements[J]. Journal of Transportation Engineering, 1998, 124 (2): 112-116. doi: 10.1061/(ASCE)0733-947X(1998)124:2(112)
    [6] ASBAHAN R E, VANDENBOSSCHE J M. Effects of temperature and moisture gradients on slab deformation for jointed plain concrete pavements[J]. Journal of Transportation Engineering, 2011, 137 (8): 563-570. doi: 10.1061/(ASCE)TE.1943-5436.0000237
    [7] NASSIRI S. Establishing permanent curl/warp temperature gradient in jointed plain concrete pavements[D]. Pittsburgh: University of Pittsburgh, 2011.
    [8] WADE S A, NIXON J M, SCHINDLER A K, et al. Effect of temperature on the setting behavior of concrete[J]. Journal of Materials in Civil Engineering, 2010, 22 (3): 214-222. doi: 10.1061/(ASCE)0899-1561(2010)22:3(214)
    [9] ANDERSEN P J, ANDERSEN M E, WHITING D. A guide to evaluating thermal effects in concrete pavements[R]. Washington DC: National Research Council, 1992.
    [10] YE D. Early-age concrete temperature and moisture relative to curing effectiveness and projected effects on selected aspects of slab behavior[D]. College Station: Texas A & amp; amp; M University, 2007.
    [11] 王燕, 陈玉香, 凌道盛, 等. 桐柏电站混凝土基础水化热温度场有限元分析[J]. 岩石力学与工程学报, 2007, 26 (增1): 3266-3270. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S1100.htm

    WANG Yan, CHEN Yu-xiang, LING Dao-sheng, et al. Finite element analysis of hydration heat temperature field in concrete foundation of Tongbai power station[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26 (S1): 3266-3270. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S1100.htm
    [12] 刘杏红, 周创兵, 常晓林, 等. 大体积混凝土温度裂缝扩展过程模拟[J]. 岩土力学, 2010, 31 (8): 2666-2670, 2676. doi: 10.3969/j.issn.1000-7598.2010.08.053

    LIU Xing-hong, ZHOU Chuang-bing, CHANG Xiao-lin, et al. Simulation of mass concrete temperature cracking propagation process[J]. Rock and Soil Mechanics, 2010, 31 (8): 2666-2670, 2676. (in Chinese). doi: 10.3969/j.issn.1000-7598.2010.08.053
    [13] 胡昌斌, 金王杰, 孙增华. 水泥混凝土路面早龄期温度场数值模拟研究[J]. 工程力学, 2013, 30 (4): 175-183. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201304025.htm

    HU Chang-bin, JIN Wang-jie, SUN Zeng-hua. Numerical simulation of early-age temperature of cement concrete pavement[J]. Engineering Mechanics, 2013, 30 (4): 175-183. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201304025.htm
    [14] VANDENBOSSCHE J M, MU F, GUTIERREZ J J, et al. An evaluation of the built-in temperature difference input parameter in the jointed plain concrete pavement cracking model of the Mechanistic-Empirical Pavement Design Guide[J]. International Journal of Pavement Engineering, 2011, 12 (3): 215-228. doi: 10.1080/10298436.2010.489113
    [15] HARIK I E, PEI Jian-ping, SOUTHGATE H, et al. Temperature effects on rigid pavements[J]. Journal of Transportation Engineering, 1994, 120 (1): 127-143. doi: 10.1061/(ASCE)0733-947X(1994)120:1(127)
  • 加载中
图(18) / 表(5)
计量
  • 文章访问数:  694
  • HTML全文浏览量:  74
  • PDF下载量:  1057
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-18
  • 刊出日期:  2013-10-25

目录

    /

    返回文章
    返回