Characteristic and control method of early-age temperature field for cement concrete pavement
-
摘要: 提出了基于水泥混凝土路面温度应力、固化基础温度、固化温度差和养生温度的早龄期温度场控制原则, 采用专用水泥混凝土路面早龄期温度场数值模拟程序, 进行了路面早龄期温度场参数的敏感性和影响特性分析, 评估了路面早龄期温度场控制措施的有效性。分析结果表明: 与材料参数相比, 环境施工参数是影响路面早龄期温度特征的主要因素; 选择合适的铺筑时刻、环境条件可使板顶板底温度差改变达20℃; 采用恰当的养护方式和养护材料可降低路面板温度12℃以上; 混凝土摊铺温度、水灰比和水泥用量对固化基础温度影响显著; 对于特定温度控制指标, 各影响参数敏感性并不相同, 需结合现场路面板早龄期温度仿真平衡措施影响。Abstract: The control principles of early-age temperature field were put forward based on the temperature stress, built-in basic temperature, built-in temperature difference and curing temperature of cement concrete pavement.The specialized early-age temperature field numerical simulation program of cement concrete pavement was used, the sensitivities and influencing characteristics of pavement early-age temperature field parameters were researched, and the effectivenesses of pavement early-age temperature field control measures were evaluated.Analysis result shows that compared with material parameters, environment construction parameters are major factors effecting pavement early-age temperature characteristics.Appropriate paving time and environment condition may change the temperature difference between the top and the bottom of slab more than 20℃.Proper curing methods and curing materials may reduce the temperature of pavement more than 12 ℃.Concrete paving temperature, water cement ratio and cement content significantly effect built-in basic temperature.For specific temperature control target, the sensitivities of influencing parameters are not the same, field pavement early-age temperature simulation should be combined to balance the effects of control measures.
-
表 1 主要变量
Table 1. Main variables
表 2 各参数敏感性
Table 2. Sensitivity of each parameter
表 3 各参数对路面板固化温度影响
Table 3. Effect of each parameter on built-in temperature of slab
表 4 降低路面板早龄期温度的措施和效果
Table 4. Countermeasures reducing slab early-age temperature and effects
表 5 降低板顶板底温度差的措施和效果
Table 5. Countermeasures reducing slab temperature difference and effects
-
[1] SCHINDLER A K, DOSSEY T, MCCULLOUGH B F. Temperature control during construction to improve the long term performance of Portland cement concrete pavements[R]. Austin: The University of Texas at Austin, 2002. [2] SCHINDLER A K, RUIZ J M, RASMUSSEN R O, et al. Concrete pavement temperature prediction and case studies with the FHWA HIPERPAV models[J]. Cement and Concrete Composites, 2004, 26 (5): 463-471. doi: 10.1016/S0958-9465(03)00075-1 [3] YI S T, MOON Y H, KIM J K. Long-term strength prediction of concrete with curing temperature[J]. Cement and Concrete Research, 2005, 35 (10): 1961-1969. doi: 10.1016/j.cemconres.2005.06.010 [4] RAO C, BARENBERG E J, SNYDER M B, et al. Effects of temperature and moisture on the response of jointed concrete pavements[C]∥International Society for Concrete Pavements. 7th International Conference on Concrete Pavements. Orlando: International Society for Concrete Pavements, 2001: 23-38. [5] KUO C M. Effective temperature differential in concrete pavements[J]. Journal of Transportation Engineering, 1998, 124 (2): 112-116. doi: 10.1061/(ASCE)0733-947X(1998)124:2(112) [6] ASBAHAN R E, VANDENBOSSCHE J M. Effects of temperature and moisture gradients on slab deformation for jointed plain concrete pavements[J]. Journal of Transportation Engineering, 2011, 137 (8): 563-570. doi: 10.1061/(ASCE)TE.1943-5436.0000237 [7] NASSIRI S. Establishing permanent curl/warp temperature gradient in jointed plain concrete pavements[D]. Pittsburgh: University of Pittsburgh, 2011. [8] WADE S A, NIXON J M, SCHINDLER A K, et al. Effect of temperature on the setting behavior of concrete[J]. Journal of Materials in Civil Engineering, 2010, 22 (3): 214-222. doi: 10.1061/(ASCE)0899-1561(2010)22:3(214) [9] ANDERSEN P J, ANDERSEN M E, WHITING D. A guide to evaluating thermal effects in concrete pavements[R]. Washington DC: National Research Council, 1992. [10] YE D. Early-age concrete temperature and moisture relative to curing effectiveness and projected effects on selected aspects of slab behavior[D]. College Station: Texas A & amp; amp; M University, 2007. [11] 王燕, 陈玉香, 凌道盛, 等. 桐柏电站混凝土基础水化热温度场有限元分析[J]. 岩石力学与工程学报, 2007, 26 (增1): 3266-3270. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S1100.htmWANG Yan, CHEN Yu-xiang, LING Dao-sheng, et al. Finite element analysis of hydration heat temperature field in concrete foundation of Tongbai power station[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26 (S1): 3266-3270. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S1100.htm [12] 刘杏红, 周创兵, 常晓林, 等. 大体积混凝土温度裂缝扩展过程模拟[J]. 岩土力学, 2010, 31 (8): 2666-2670, 2676. doi: 10.3969/j.issn.1000-7598.2010.08.053LIU Xing-hong, ZHOU Chuang-bing, CHANG Xiao-lin, et al. Simulation of mass concrete temperature cracking propagation process[J]. Rock and Soil Mechanics, 2010, 31 (8): 2666-2670, 2676. (in Chinese). doi: 10.3969/j.issn.1000-7598.2010.08.053 [13] 胡昌斌, 金王杰, 孙增华. 水泥混凝土路面早龄期温度场数值模拟研究[J]. 工程力学, 2013, 30 (4): 175-183. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201304025.htmHU Chang-bin, JIN Wang-jie, SUN Zeng-hua. Numerical simulation of early-age temperature of cement concrete pavement[J]. Engineering Mechanics, 2013, 30 (4): 175-183. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201304025.htm [14] VANDENBOSSCHE J M, MU F, GUTIERREZ J J, et al. An evaluation of the built-in temperature difference input parameter in the jointed plain concrete pavement cracking model of the Mechanistic-Empirical Pavement Design Guide[J]. International Journal of Pavement Engineering, 2011, 12 (3): 215-228. doi: 10.1080/10298436.2010.489113 [15] HARIK I E, PEI Jian-ping, SOUTHGATE H, et al. Temperature effects on rigid pavements[J]. Journal of Transportation Engineering, 1994, 120 (1): 127-143. doi: 10.1061/(ASCE)0733-947X(1994)120:1(127)