留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型货车径向转向架低动力性能与连接可靠性

李亨利 李芾 潘树平 伏凯 王勇

李亨利, 李芾, 潘树平, 伏凯, 王勇. 新型货车径向转向架低动力性能与连接可靠性[J]. 交通运输工程学报, 2013, 13(5): 39-46.
引用本文: 李亨利, 李芾, 潘树平, 伏凯, 王勇. 新型货车径向转向架低动力性能与连接可靠性[J]. 交通运输工程学报, 2013, 13(5): 39-46.
LI Heng-li, LI Fei, PAN Shu-ping, FU Kai, WANG Yong. Low track force dynamic performance and connection reliability of new type radial bogie for freight car[J]. Journal of Traffic and Transportation Engineering, 2013, 13(5): 39-46.
Citation: LI Heng-li, LI Fei, PAN Shu-ping, FU Kai, WANG Yong. Low track force dynamic performance and connection reliability of new type radial bogie for freight car[J]. Journal of Traffic and Transportation Engineering, 2013, 13(5): 39-46.

新型货车径向转向架低动力性能与连接可靠性

基金项目: 

国家自然科学基金项目 50975238

国家自然科学基金项目 51005190

中央高校基本科研业务费专项资金项目 SWJTU12CX041

详细信息
    作者简介:

    李亨利(1981-), 男, 四川大竹人, 西南交通大学工学博士研究生, 从事车辆系统动力学研究

    李芾(1956-), 男, 云南昆明人, 西南交通大学教授, 工学博士

  • 中图分类号: U270.331

Low track force dynamic performance and connection reliability of new type radial bogie for freight car

More Information
  • 摘要: 为实现重载货车转向架轮轨低动力作用, 根据中国铁路重载运输的实际情况和转K7型转向架的运用效果提出了一种新型货车径向转向架方案: 对原整体副构架结构进行优化, 采用了独立承载鞍, 并由内外侧两铆钉连接承载鞍和副构架体。基于多体系统动力学方法, 以中国C70EF型敞车为研究对象, 利用SIMPACK软件建立车辆-轨道耦合动力学模型, 计算了新型径向转向架轮轨动力性能, 分析了副构架和承载鞍作用力的规律, 并以此进行了副构架连接可靠性的有限元仿真计算和疲劳可靠性台架试验。分析结果表明: 与转K7型转向架相比, 新型径向转向架受到0.01 rad的轨道低接头脉冲激扰时, 可降低轮轨低频力约10.78%; 受到AAR5动态线路激扰时, 轮轨垂向力和横向力可分别降低约2.98%~4.03%、2.96%~9.77%, 整车轮轨磨耗功率降低约5.03%~29.46%; 承载鞍内侧铆钉受力明显大于外侧铆钉, 内侧铆钉孔边缘应力最大值约为180.76 MPa, 铆钉剪切应力为58.13 MPa, 均小于相应材料的许用应力345、128 MPa, 具有足够的疲劳强度和运用可靠性。

     

  • 图  1  转K7型转向架结构

    Figure  1.  Structure of ZK7type bogie

    图  2  新型径向转向架结构

    Figure  2.  Structure of new type radial bogie

    图  3  车辆-轨道耦合动力学模型

    Figure  3.  Vehicle-track coupling dynamics model

    图  4  轨道低接头设置

    Figure  4.  Setting of sinking track joint

    图  5  直线工况下轮轨相互作用

    Figure  5.  Wheel-rail interaction forces on straight line

    图  6  曲线工况下轮轨相互作用

    Figure  6.  Wheel-rail interaction forces on curve

    图  7  径向连接杆作用力

    Figure  7.  Forces of radial rods

    图  8  副构架与承载鞍的连接结构

    Figure  8.  Connection structure between sub-frame and adapter

    图  9  铆钉受力时程

    Figure  9.  Force-time curves of rivets

    图  10  铆钉连接强度计算结果

    Figure  10.  Calculation result of rivet connection strength

    图  11  疲劳试验

    Figure  11.  Fatigue test

    表  1  P2的计算结果

    Table  1.   Calculation result of P2

    下载: 导出CSV

    表  2  速度设置

    Table  2.   Speed setting

    下载: 导出CSV
  • [1] ATTIVISSIMO F, DANESE A, GIAQUINTO N, et al. A railway measurement system to evaluate the wheel-rail interaction quality[J]. IEEE Transactions on Instrumentation and Measurment, 2007, 56 (5): 1583-1589. doi: 10.1109/TIM.2007.903583
    [2] MUTTON P J, EPP C J. Rolling contact fatigue in railway wheels under high axle loads[J]. Wear, 1991, 144 (1): 139-152.
    [3] 丁军君, 孙树磊, 李芾, 等. 重载货车车轮磨耗仿真[J]. 交通运输工程学报, 2011, 11 (4): 56-60. http://transport.chd.edu.cn/article/id/201104009

    DING Jun-jun, SUN Shu-lei, LI Fu, et al. Simulation of wheel wear for heavy haul freight car[J]. Journal of Traffic and Transportation Engineering, 2011, 11 (4): 56-60. (in Chinese). http://transport.chd.edu.cn/article/id/201104009
    [4] SAULOT A, BAILLET L. Dynamic finite element simulations for understanding wheel-rail contact oscillatory states occurring under sliding conditions[J]. Journal of Tribology, 2006, 128 (4): 761-770. doi: 10.1115/1.2345402
    [5] WICKENS A H. Static and dynamic stability of unsymmetric tow-axle railway vehicles possessing perfect steering[J]. Vehicle System Dynamics, 1982, 11 (2): 89-106. doi: 10.1080/00423118208968691
    [6] WICKENS A H. Static and dynamic instabilities of bogie railway vehicles with linkage steered wheelsets[J]. Vehicle System Dynamics, 1996, 26 (1): 1-16. doi: 10.1080/00423119608969299
    [7] SCHEFFEL H, FRÖHLING R D, HEYNS P S. Curving and stability analysis of self-steering bogies having a variable yaw constraint[J]. Vehicle System Dynamics, 1994, 23 (S1): 425-436.
    [8] SCHEFFEL H. Unconventional bogie design-their practical basis and historical background[J]. Vehicle System Dynamics, 1995, 24 (6/7): 497-524.
    [9] SCHEFFEL H. Self-steering wheelsets will reduce wear and permit higher speeds[J]. Railway Gazette International, 1976, 132 (1): 453-456.
    [10] 李亨利, 李芾, 傅茂海. 货车径向转向架理论及其运用[J]. 铁道机车车辆, 2005, 25 (4): 13-17.

    LI Heng-1i, LI Fu, FU Mao-hai. Development and principle of truck radial bogies[J]. Railway Locomotive and Car, 2005, 25 (4): 13-17. (in Chinese).
    [11] 黄十周. 我国货车自导向径向转向架的研究和发展[J]. 铁道车辆, 2013, 51 (4): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL201304002.htm

    HUANG Shi-zhou. Research and development of the selfsteering radial bogies for freight cars in our country[J]. Rolling Stock, 2013, 51 (4): 1-5. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL201304002.htm
    [12] LI Heng-li, PAN Shu-ping, FU Mao-hai. Study on the wheel wear for the heavy haul self-steering bogie in China[C]∥IHHA. 2011 International Heavy Haul Association Conference, Railroading in Extreme Conditions. Calgary: IHHA, 2011: 235-242.
    [13] 翟婉明. 车辆-轨道耦合动力学研究的新进展[J]. 中国铁道科学, 2002, 23 (2): 1-14. doi: 10.3321/j.issn:1001-4632.2002.02.001

    ZHAI Wan-ming. New advance of vehicle-track coupling dynamics[J]. China Railway Science, 2002, 23 (2): 1-14. (in Chinese). doi: 10.3321/j.issn:1001-4632.2002.02.001
    [14] 沈志云. 低动力作用货车转向架动力性能的研究[J]. 西南交通大学学报, 1991, 79 (1): 5-13. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT199101001.htm

    SHEN Zhi-yun. Dynamic behavior of low track force freight bogies[J]. Journal of Southwest Jiaotong University, 1991, 79 (1): 5-13. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT199101001.htm
    [15] 翟婉明. 机车车辆与线路最佳匹配设计原理、方法和工程实践[J]. 中国铁道科学, 2006, 27 (2): 60-65. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200602012.htm

    ZHAI Wan-ming. Optimum matching design between railway vehicles and tracks: principle, method and engineering practice[J]. China Railway Science, 2006, 27 (2): 60-65. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200602012.htm
    [16] 赵方伟, 王璞, 李亨利, 等. 转K7型转向架副构架疲劳强度分析[J]. 北京交通大学学报, 2012, 36 (1): 132-134, 139. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201201027.htm

    ZHAO Fang-wei, WANG Pu, LI Heng-li, et al. Fatigue strength analysis of deputy frame of K7bogie[J]. Journal of Beijing Jiaotong University, 2012, 36 (1): 132-134, 139. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201201027.htm
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  704
  • HTML全文浏览量:  94
  • PDF下载量:  981
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-18
  • 刊出日期:  2013-10-25

目录

    /

    返回文章
    返回