Choice behaviour model and influencing factor analysis of travel destination for rural resident
-
摘要: 为分析农村居民出行目的地选择的影响因素与影响过程, 应用自主设计的调查问卷, 获得3 329份农村人口出行特征数据。按照农村居民常规出行目的地分布情况, 将目的地划分为邻村、乡镇、县城和市区。运用非集计理论, 将农村居民的性别、年龄、教育程度、家庭年总收入、出行目的和出行距离等个人、家庭和出行属性作为影响因素, 并将4个目的地作为4个选择肢, 建立了农村居民出行目的地选择行为度量模型, 并结合弹性理论分析了各个影响因素的敏感度。分析结果表明: 农村居民的出行属性中出行距离和出行目的2个影响因素对应的弹性值均大于1, 说明这些因素对出行目的地选择富有弹性, 影响显著; 年龄、是否换乘和所需时间3个因素对部分目的地的选择富有弹性; 性别、受教育程度、家庭年总收入和出行时间4个因素对应的弹性值均小于1, 说明这些因素对出行目的地选择缺乏弹性。Abstract: In order to analyze the influencing factors and influencing process of travel destination choice for rural residents, travel characteristic data of 3 329 rural residents were obtained through self-designed questionnaire.According to the distribution of conventional travel destinations of rural residents, the destinations were divided into neighboring villages, towns, counties and cities.Using disaggregate theory, personal, family and travel attributes such as rural residents genders, ages, education levels, annual household incomes, travel purposes and travel distances were considered as influencing factors, and four destinations were selected as four alternative parts, the travel destination choice behavior measurement model was established.The sensibility of each factor was analyzed combined with elastic theory.Analyhsis result shows that the corresponding elasticity values of travel distance and travel destination of rural resident are greater than 1, indicating that the above-mentioned factors on the travel destination choice are of flexibility and significant effect.The age, transfer and time are of flexibility for some destination choice, the corresponding elasticity values of genders, education levels, annual household incomes and total travel time are less than 1, indicating that the above-mentioned factors on the travel destination choice are of no inflexibility.
-
Key words:
- traffic planning /
- rural resident /
- travel destination /
- travel characteristic /
- MNL model /
- sensitivity analysis
-
表 1 模型影响因素
Table 1. Influencing factors of model
表 2 标定结果
Table 2. Calibration results
表 3 影响因素的参数值
Table 3. Parameter values of influence factors
表 4 绝对误差
Table 4. Absolute errors
表 5 弹性值
Table 5. Elastic values
表 6 个人属性计算结果
Table 6. Calculation results of personal properties
表 7 家庭属性计算结果
Table 7. Calculation results of family properties
表 8 出行属性计算结果
Table 8. Calculation results of travel properties
-
[1] SALEH W, FARRELL S. Implications of congestion charging for departure time choice: work and non-work schedule flexibility[J]. Transportation Research Part A: Policy and Practice, 2005, 39 (7/8/9): 773-791. [2] LEMP J D, KOCKELMEN K M, DAMIEN P. The continuous cross-nested logit model: formulation and application for departure time choice[J]. Transportation Research Part B: Methodological, 2010, 44 (5): 646-661. doi: 10.1016/j.trb.2010.03.001 [3] OZBAY K, YANMAZ-TUZEL O. Valuation of travel time and departure time choice in the presence of time-of-day pricing[J]. Transportation Research Part A: Policy and Practice, 2008, 42 (4): 577-590. doi: 10.1016/j.tra.2007.12.002 [4] HENSHER D A, GREME W H. Specification and estimation of the nested logit model: alternative normalizations[J]. Transportation Research Part B: Methodology, 2002, 36 (1): 1-17. doi: 10.1016/S0191-2615(00)00035-7 [5] KWIGIZIE V, VALERIAN D, SANDO T. A cross-nested logit model for trip type-mode choice: an application[J]. Advances in Transportation Studies, 2011, 23 (2): 29-40. [6] 陈尚云, 杜文, 高世廉. 我国特大城市出行分布模型及其参数的研究[J]. 系统工程, 2002, 20 (4): 63-66. https://www.cnki.com.cn/Article/CJFDTOTAL-GCXT200204012.htmCHEN Shang-yun, DU Wen, GAO Shi-lian. The study on the model and parameter of urban-trip distribution in metropolises of China[J]. Systems Engineering, 2002, 20 (4): 63-66. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCXT200204012.htm [7] 张政, 毛保华, 刘明君, 等. 北京老年人出行行为特征分析[J]. 交通运输系统工程与信息, 2007, 7 (6): 11-20. doi: 10.3969/j.issn.1009-6744.2007.06.002ZHANG Zheng, MAO Bao-hua, LIU Ming-jun, et al. An analysis of travel patterns of the elders in Beijing[J]. Journal of Transportation Systems Engineering and Information Technology, 2007, 7 (6): 11-20. (in Chinese). doi: 10.3969/j.issn.1009-6744.2007.06.002 [8] 徐婷, 蓝臻, 胡大伟, 等. 出行成本对居民出行方式的影响[J]. 交通运输工程学报, 2013, 13 (1): 91-97. doi: 10.3969/j.issn.1671-1637.2013.01.014XU Ting, LAN Zhen, HU Da-wei, et al. Influence of trip cost on trip mode for resident[J]. Journal of Traffic and Transportation Engineering, 2013, 13 (1): 91-97. (in Chinese). doi: 10.3969/j.issn.1671-1637.2013.01.014 [9] 赵建有, 袁华智, 蹇小平, 等. 城市低收入人群出行方式选择模型[J]. 长安大学学报: 自然科学版, 2012, 32 (4): 65-69. doi: 10.3969/j.issn.1671-8879.2012.04.013ZHAO Jian-you, YUAN Hua-zhi, JIAN Xiao-ping, et al. Selection model of travel mode for urban low-income population[J]. Journal of Chang'an University: Natural Science Edition, 2012, 32 (4): 65-69. (in Chinese). doi: 10.3969/j.issn.1671-8879.2012.04.013 [10] 杨励雅, 邵春福, HAGHANI A. 出行方式与出发时间联合选择的分层Logit模型[J]. 交通运输工程学报, 2012, 12 (2): 76-83. doi: 10.3969/j.issn.1671-1637.2012.02.013YANG Li-ya, SHAO Chun-fu, HAGHANI A. Nested logit model of combined selection for travel mode and departure time[J]. Journal of Traffic and Transportation Engineering, 2012, 12 (2): 76-83. (in Chinese). doi: 10.3969/j.issn.1671-1637.2012.02.013 [11] 陈团生, 毛保华, 高利平, 等. 客运专线旅客出行选择行为分析[J]. 铁道学报, 2007, 29 (3): 8-12. doi: 10.3321/j.issn:1001-8360.2007.03.002CHEN Tuan-sheng, MAO Bao-hua, GAO Li-ping, et al. Research about passenger travel choice behavior of dedicated passenger railway line[J]. Journal of the China Railway Society, 2007, 29 (3): 8-12. (in Chinese). doi: 10.3321/j.issn:1001-8360.2007.03.002 [12] 冯忠祥. 农村人口出行特征及运力结构分配模型研究[D]. 西安: 长安大学, 2010.FENG Zhong-xiang. Research on person trip characteristics and the capacity structure model of passenger transport for rural population[D]. Xi'an: Chang'an University, 2010. (in Chinese). [13] 刘浩学, 冯忠祥, 赵炜华, 等. 中国农村人口活动出行距离分布模型[J]. 长安大学学报: 自然科学版, 2010, 30 (6): 68-71. doi: 10.3969/j.issn.1671-8879.2010.06.014LIU Hao-xue, FENG Zhong-xiang, ZHAO Wei-hua, et al. Trip distance distribution mode of Chinese rural population[J]. Journal of Chang'an University: Natural Science Edition, 2010, 30 (6): 68-71. (in Chinese). doi: 10.3969/j.issn.1671-8879.2010.06.014 [14] FENG Zhong-xiang, YUAN Hua-zhi, LIU Jing, et al. Selection model of trip time for rural population[J]. Journal of Central South University of Technology, 2013, 20 (1): 274-278. doi: 10.1007/s11771-013-1485-z [15] BOYD J H, MELLMAN R E. The effect of fuel economy standards on the U. S. automotive market: a hedonic demand analysis[J]. Transportation Research Part A: Policy and Practice, 1980, 14 (2): 367-378. [16] CARDELL N S, DUNBAR F C. Measuring the societal impacts of automobile down-sizing[J]. Transportation Research Part A: Policy and Practice, 1980, 14 (2): 423-434. [17] 关宏志, 王鑫, 王雪. 停车需求预测方法研究[J]. 北京工业大学学报, 2006, 32 (7): 600-604. doi: 10.3969/j.issn.0254-0037.2006.07.006GUAN Hong-zhi, WANG Xin, WANG Xue. The research on forecasting method for parking demanding[J]. Journal of Beijing University of Technology, 2006, 32 (7): 600-604. (in Chinese). doi: 10.3969/j.issn.0254-0037.2006.07.006 [18] 刘伟铭, 李蓉. ETC系统缴费方式随机选择模型[J]. 中国公路学报, 2006, 19 (5): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200605014.htmLIU Wei-ming, LI Rong. Random choice model for pay charge way of ETC system[J]. China Journal of Highway and Transport, 2006, 19 (5): 77-82. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200605014.htm [19] 金安. LOGIT模型参数估计方法研究[J]. 交通运输系统工程与信息, 2004, 4 (1): 71-75. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT200401014.htmJIN An. On methodology of parameter estimation in LOGIT model[J]. Journal of Transportation Systems Engineering and Information Technology, 2004, 4 (1): 71-75. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT200401014.htm [20] 袁华智, 冯忠祥, 蹇小平, 等. 城市中心区域小汽车停车设施选择模型[J]. 公路交通科技, 2012, 29 (10): 137-141. doi: 10.3969/j.issn.1002-0268.2012.10.024YUAN Hua-zhi, FENG Zhong-xiang, JIAN Xiao-ping, et al. Selection model of car parking facility in urban central region[J]. Journal of Highway and Transportation Research and Development, 2012, 29 (10): 137-141. (in Chinese). doi: 10.3969/j.issn.1002-0268.2012.10.024