Height optimization of windbreak wall with holes on high-speed railway bridge
Article Text (Baidu Translation)
-
摘要: 基于三维定常N-S方程和k-ε双方程湍流模型, 采用有限体积法模拟了高速铁路桥梁上透风式挡风墙高度对列车气动性能的影响, 分析了挡风墙后列车倾覆力矩、接触网处风速与挡风墙高度之间的关系, 结合风洞试验验证了数值方法的正确性。分析结果表明: 安装挡风墙后, 随着挡风墙高度的增加, 当量横向力系数、倾覆力矩系数绝对值迅速减小; 在相同挡风墙高度下, 背风线列车当量升力系数约为迎风线列车的1/2;无挡风墙、无列车通过桥梁时, 两线路接触网处横向风速基本相同, 而当列车通过桥梁迎风线和背风线时, 其接触网处横向风速急剧升高, 分别增加约28.9%和27.2%;安装一定高度挡风墙后, 随挡风墙高度的增加, 接触网处横向风速整体呈现减小趋势, 背风线风速减小较快; 无论单侧还是双侧挡风墙, 桥梁挡风墙合理高度均为2.8m。Abstract: Based on 3D steady N-S equation and k-ε double-equation turbulent model, the influence of height of windbreak wall with holes on high-speed railway bridge on train aerodynamic performance was simulated by using finite volume method. The relationships among train overturning moment, wind speed at catenary position and the height were analyzed, and the accuracy of present numerical method was validated combining with wind tunnel test. Analysis result shows that after the installment of windbreak wall, the equivalent coefficient absolute values of lateral force and overturning moment decrease speedily with the increase of the height. At the same height, the equivalent coefficient of lift force of train located at leeward line is as half as that at windward line. As there are no windbreak wall or train on bridge, the lateral wind speeds at two lines'catenary position are almost equal, the speeds rise sharply by 28.9% and 27.2%respectively when the train passes windward line and leeward line. After the installment of windbreak wall, the lateral wind speed at catenary position tends to decline with the increase of the height, and the leeward line wind speed reduces rapidly. Whether it is single-side or doubleside windbreak wall, the reasonable height of windbreak wall with holes on high-speed railway bridge is 2.8m.
-
-
[1] 郑健. 中国高速铁路桥梁建设关键技术[J]. 中国工程科学, 2008, 10 (7): 18-27. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX200807003.htmZHENG Jian. Key technologies for high speed railway bridge construction[J]. Engineering Sciences, 2008, 10 (7): 18-27. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX200807003.htm [2] 高广军, 苗秀娟. 强横风下青藏线客车在不同高度桥梁上的气动性能分析[J]. 中南大学学报: 自然科学版, 2010, 41 (1): 376-380. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201001064.htmGAO Guang-jun, MIAO Xiu-juan. Aerodynamic performance of passenger train on different height of bridge of QinghaiTibet railway line under strong cross wind[J]. Journal of Central South University: Science and Technology, 2010, 41 (1): 376-380. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201001064.htm [3] SUZUKI M, TANEMOTO K, MAEDA T. Aerodynamic characteristics of train/vehicles under cross winds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91 (1/2): 209-218. [4] FUJII T, MAEDA T, ISHIDA H, et al. Wind-induced accidents of train/vehicles and their measures in Japan[J]. Quarterly Report of Railway Technical Research Institute, 1999, 40 (1): 50-55. [5] 张洁, 刘堂红. 新疆单线铁路土堤式挡风墙坡角优化研究[J]. 中国铁道科学, 2012, 33 (2): 28-32. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201202006.htmZHANG Jie, LIU Tang-hong. Optimization research on the slope angle of the earth type windbreak wall of Xinjiang single-track railway[J]. China Railway Science, 2012, 33 (2): 28-32. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201202006.htm [6] IMAI T, FUJII T, TANEMOTO K, et al. New train regulation method based on wind direction and velocity of natural wind against strong winds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90 (12/13/14/15): 1601-1610. [7] 林兵. 南疆百里风区桥梁防风施工技术[J]. 施工技术, 2012, 41 (5): 65-69. https://www.cnki.com.cn/Article/CJFDTOTAL-SGJS201205020.htmLIN Bing. Wind-resistant construction technology of bridge in 100km wind area of South Xinjiang[J]. Construction Technology, 2012, 41 (5): 65-69. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SGJS201205020.htm [8] 李雪冰, 杨征, 张继业, 等. 强风中高速列车空气动力学性能[J]. 交通运输工程学报, 2009, 9 (2): 66-73. doi: 10.3321/j.issn:1671-1637.2009.02.012LI Xue-bing, YANG Zheng, ZHANG Ji-ye, et al. Aerodynamics properties of high-speed train in strong wind[J]. Journal of Traffic and Transportation Engineering, 2009, 9 (2): 66-73. (in Chinese). doi: 10.3321/j.issn:1671-1637.2009.02.012 [9] LIU Tang-hong, ZHANG Jie. Effect of landform on aerodynamic performance of high-speed trains in cutting under cross wind[J]. Journal of Central South University, 2013, 20 (3): 830-836. doi: 10.1007/s11771-013-1554-3 [10] 周丹, 田红旗, 鲁寨军. 大风对路堤上运行的客运列车气动性能的影响[J]. 交通运输工程学报, 2007, 7 (4): 6-9. http://transport.chd.edu.cn/article/id/200704002ZHOU Dan, TIAN Hong-qi, LU Zhai-jun. Influence of strong crosswind on aerodynamic performance of passenger train running on embankment[J]. Journal of Traffic and Transportation Engineering, 2007, 7 (4): 6-9. (in Chinese). http://transport.chd.edu.cn/article/id/200704002 [11] 高广军, 段丽丽. 单线路堤上挡风墙高度研究[J]. 中南大学学报: 自然科学版, 2011, 42 (1): 254-259. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201101042.htmGAO Guang-jun, DUAN Li-li. Height of wind barrier on embankment of single railway line[J]. Journal of Central South University: Science and Technology, 2011, 42 (1): 254-259. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201101042.htm [12] 李燕飞, 田红旗, 刘辉. 高速铁路开孔式挡风墙外形优化研究[J]. 中南大学学报: 自然科学版, 2011, 42 (10): 3207-3212. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201110053.htmLI Yan-fei, TIAN Hong-qi, LIU Hui. Optimization of windbreak wall with holes in high-speed railway[J]. Journal of Central South University: Science and Technology, 2011, 42 (10): 3207-3212. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201110053.htm [13] 田红旗. 中国列车空气动力学研究进展[J]. 交通运输工程学报, 2006, 6 (1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC200601000.htmTIAN Hong-qi. Study evolvement of train aerodynamics in China[J]. Journal of Traffic and Transportation Engineering, 2006, 6 (1): 1-9. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC200601000.htm [14] 高广军, 田红旗, 姚松, 等. 兰新线强横风对车辆倾覆稳定性的影响[J]. 铁道学报, 2004, 26 (4): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200404008.htmGAO Guang-jun, TIAN Hong-qi, YAO Song, et al. Effect of strong cross-wind on the stability of trains running on the Lanzhou-Xinjiang railway[J]. Journal of the China Railway Society, 2004, 26 (4): 36-40. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200404008.htm [15] CARRARINI A. Reliability based analysis of the crosswind stability of railway vehicles[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95 (7): 493-509. -