留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速铁路桥梁上透风式挡风墙高度优化

张洁 高广军 李靓娟

张洁, 高广军, 李靓娟. 高速铁路桥梁上透风式挡风墙高度优化[J]. 交通运输工程学报, 2013, 13(6): 28-35.
引用本文: 张洁, 高广军, 李靓娟. 高速铁路桥梁上透风式挡风墙高度优化[J]. 交通运输工程学报, 2013, 13(6): 28-35.
ZHANG Jie, GAO Guang-jun, LI Jing-juan. Height optimization of windbreak wall with holes on high-speed railway bridge[J]. Journal of Traffic and Transportation Engineering, 2013, 13(6): 28-35.
Citation: ZHANG Jie, GAO Guang-jun, LI Jing-juan. Height optimization of windbreak wall with holes on high-speed railway bridge[J]. Journal of Traffic and Transportation Engineering, 2013, 13(6): 28-35.

高速铁路桥梁上透风式挡风墙高度优化

基金项目: 

国家自然科学基金项目 51075401

国家自然科学基金项目 U1134203

中南大学自由探索计划项目 2011QNZT067

详细信息
    作者简介:

    张洁(1987-), 男, 湖南溆浦人, 中南大学工学博士研究生, 从事列车空气动力学研究

    高广军(1973-), 男, 河南安阳人, 中南大学教授, 工学博士

  • 中图分类号: U216.413

Height optimization of windbreak wall with holes on high-speed railway bridge

More Information
    Author Bio:

    ZHANG Jie (1987-), male, doctoral student, +86-731-82656673, jie_csu@csu.edu.cn

    GAO Guang-jun(1973-), male, professor, PhD, +86-731-82656673, gjgao@csu.edu.cn

  • 摘要: 基于三维定常N-S方程和k-ε双方程湍流模型, 采用有限体积法模拟了高速铁路桥梁上透风式挡风墙高度对列车气动性能的影响, 分析了挡风墙后列车倾覆力矩、接触网处风速与挡风墙高度之间的关系, 结合风洞试验验证了数值方法的正确性。分析结果表明: 安装挡风墙后, 随着挡风墙高度的增加, 当量横向力系数、倾覆力矩系数绝对值迅速减小; 在相同挡风墙高度下, 背风线列车当量升力系数约为迎风线列车的1/2;无挡风墙、无列车通过桥梁时, 两线路接触网处横向风速基本相同, 而当列车通过桥梁迎风线和背风线时, 其接触网处横向风速急剧升高, 分别增加约28.9%和27.2%;安装一定高度挡风墙后, 随挡风墙高度的增加, 接触网处横向风速整体呈现减小趋势, 背风线风速减小较快; 无论单侧还是双侧挡风墙, 桥梁挡风墙合理高度均为2.8m。

     

  • 图  1  计算模型

    Figure  1.  Calculation model

    图  2  计算区域

    Figure  2.  Calculation zone

    图  3  头车表面网格

    Figure  3.  Surface mesh of head car

    图  4  挡风墙结构

    Figure  4.  Structures of windbreak wall

    图  5  试验与数值结果对比

    Figure  5.  Comparison of experimental and simulational results

    图  6  风洞试验

    Figure  6.  Wind tunnel test

    图  7  压力分布

    Figure  7.  Pressure distributions

    图  8  流线

    Figure  8.  Streamlines

    图  9  迎风线当量气动力系数随挡风墙高度变化曲线

    Figure  9.  Curves of windward line equivalent aerodynamic coefficients with windbreak wall heights

    图  10  背风线当量气动力系数随挡风墙高度变化曲线

    Figure  10.  Curves of leeward line equivalent aerodynamic coefficients with windbreak wall heights

    图  11  横向风速随挡风墙高度变化曲线

    Figure  11.  Curves of lateral wind speeds with windbreak wall heights

  • [1] 郑健. 中国高速铁路桥梁建设关键技术[J]. 中国工程科学, 2008, 10 (7): 18-27. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX200807003.htm

    ZHENG Jian. Key technologies for high speed railway bridge construction[J]. Engineering Sciences, 2008, 10 (7): 18-27. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX200807003.htm
    [2] 高广军, 苗秀娟. 强横风下青藏线客车在不同高度桥梁上的气动性能分析[J]. 中南大学学报: 自然科学版, 2010, 41 (1): 376-380. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201001064.htm

    GAO Guang-jun, MIAO Xiu-juan. Aerodynamic performance of passenger train on different height of bridge of QinghaiTibet railway line under strong cross wind[J]. Journal of Central South University: Science and Technology, 2010, 41 (1): 376-380. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201001064.htm
    [3] SUZUKI M, TANEMOTO K, MAEDA T. Aerodynamic characteristics of train/vehicles under cross winds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91 (1/2): 209-218.
    [4] FUJII T, MAEDA T, ISHIDA H, et al. Wind-induced accidents of train/vehicles and their measures in Japan[J]. Quarterly Report of Railway Technical Research Institute, 1999, 40 (1): 50-55.
    [5] 张洁, 刘堂红. 新疆单线铁路土堤式挡风墙坡角优化研究[J]. 中国铁道科学, 2012, 33 (2): 28-32. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201202006.htm

    ZHANG Jie, LIU Tang-hong. Optimization research on the slope angle of the earth type windbreak wall of Xinjiang single-track railway[J]. China Railway Science, 2012, 33 (2): 28-32. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201202006.htm
    [6] IMAI T, FUJII T, TANEMOTO K, et al. New train regulation method based on wind direction and velocity of natural wind against strong winds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90 (12/13/14/15): 1601-1610.
    [7] 林兵. 南疆百里风区桥梁防风施工技术[J]. 施工技术, 2012, 41 (5): 65-69. https://www.cnki.com.cn/Article/CJFDTOTAL-SGJS201205020.htm

    LIN Bing. Wind-resistant construction technology of bridge in 100km wind area of South Xinjiang[J]. Construction Technology, 2012, 41 (5): 65-69. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SGJS201205020.htm
    [8] 李雪冰, 杨征, 张继业, 等. 强风中高速列车空气动力学性能[J]. 交通运输工程学报, 2009, 9 (2): 66-73. doi: 10.3321/j.issn:1671-1637.2009.02.012

    LI Xue-bing, YANG Zheng, ZHANG Ji-ye, et al. Aerodynamics properties of high-speed train in strong wind[J]. Journal of Traffic and Transportation Engineering, 2009, 9 (2): 66-73. (in Chinese). doi: 10.3321/j.issn:1671-1637.2009.02.012
    [9] LIU Tang-hong, ZHANG Jie. Effect of landform on aerodynamic performance of high-speed trains in cutting under cross wind[J]. Journal of Central South University, 2013, 20 (3): 830-836. doi: 10.1007/s11771-013-1554-3
    [10] 周丹, 田红旗, 鲁寨军. 大风对路堤上运行的客运列车气动性能的影响[J]. 交通运输工程学报, 2007, 7 (4): 6-9. http://transport.chd.edu.cn/article/id/200704002

    ZHOU Dan, TIAN Hong-qi, LU Zhai-jun. Influence of strong crosswind on aerodynamic performance of passenger train running on embankment[J]. Journal of Traffic and Transportation Engineering, 2007, 7 (4): 6-9. (in Chinese). http://transport.chd.edu.cn/article/id/200704002
    [11] 高广军, 段丽丽. 单线路堤上挡风墙高度研究[J]. 中南大学学报: 自然科学版, 2011, 42 (1): 254-259. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201101042.htm

    GAO Guang-jun, DUAN Li-li. Height of wind barrier on embankment of single railway line[J]. Journal of Central South University: Science and Technology, 2011, 42 (1): 254-259. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201101042.htm
    [12] 李燕飞, 田红旗, 刘辉. 高速铁路开孔式挡风墙外形优化研究[J]. 中南大学学报: 自然科学版, 2011, 42 (10): 3207-3212. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201110053.htm

    LI Yan-fei, TIAN Hong-qi, LIU Hui. Optimization of windbreak wall with holes in high-speed railway[J]. Journal of Central South University: Science and Technology, 2011, 42 (10): 3207-3212. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201110053.htm
    [13] 田红旗. 中国列车空气动力学研究进展[J]. 交通运输工程学报, 2006, 6 (1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC200601000.htm

    TIAN Hong-qi. Study evolvement of train aerodynamics in China[J]. Journal of Traffic and Transportation Engineering, 2006, 6 (1): 1-9. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC200601000.htm
    [14] 高广军, 田红旗, 姚松, 等. 兰新线强横风对车辆倾覆稳定性的影响[J]. 铁道学报, 2004, 26 (4): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200404008.htm

    GAO Guang-jun, TIAN Hong-qi, YAO Song, et al. Effect of strong cross-wind on the stability of trains running on the Lanzhou-Xinjiang railway[J]. Journal of the China Railway Society, 2004, 26 (4): 36-40. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200404008.htm
    [15] CARRARINI A. Reliability based analysis of the crosswind stability of railway vehicles[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95 (7): 493-509.
  • 加载中
图(11)
计量
  • 文章访问数:  668
  • HTML全文浏览量:  64
  • PDF下载量:  737
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-18
  • 刊出日期:  2013-12-25

目录

    /

    返回文章
    返回