留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

过饱和交叉口交通信号控制研究现状与展望

李瑞敏

方晓平. 运输企业中不同差别价格策略[J]. 交通运输工程学报, 2003, 3(4): 85-88.
引用本文: 李瑞敏. 过饱和交叉口交通信号控制研究现状与展望[J]. 交通运输工程学报, 2013, 13(6): 119-126.
FANG Xiao-ping. Different discriminate price strategy in transportation enterprise[J]. Journal of Traffic and Transportation Engineering, 2003, 3(4): 85-88.
Citation: LI Rui-min. Study status and prospect of traffic signal control for over-saturated intersection[J]. Journal of Traffic and Transportation Engineering, 2013, 13(6): 119-126.

过饱和交叉口交通信号控制研究现状与展望

基金项目: 

国家自然科学基金项目 50908125

高等学校博士学科点专项科研基金项目 200800031059

详细信息
    作者简介:

    李瑞敏(1979-), 男, 山东莱州人, 清华大学副教授, 工学博士, 从事智能交通控制研究

  • 中图分类号: U491.51

Study status and prospect of traffic signal control for over-saturated intersection

More Information
Article Text (Baidu Translation)
  • 摘要: 为应对日益严峻的信号交叉口拥堵, 总结了过饱和交叉口交通信号控制研究的发展历程和研究现状, 并分析了未来发展趋势。介绍了过饱和交通流信号控制的多个目标, 包括最小化延误、最大化通行能力、排队长度约束等。分析了过饱和交叉口交通信号控制的多种模型与求解算法, 例如线性规划与优化模型、混合整数规划模型、基于软计算技术和人工智能技术的模型等。总结了典型交通仿真平台和信号控制优化软件对过饱和交通信号控制的支持, 以及现有多个典型信号控制系统中对过饱和交通流状态的控制方法。分析结果表明: 由于过饱和交叉口的交通流特性, 当前过饱和交叉口信号控制方法需要解决变量过多、计算复杂、计算效率低等问题; 过饱和网络的交通流特性、集成优化模型、高效求解算法与技术、仿真平台和示范应用是未来需要关注的研究趋势。

     

  • 价格理论和运输经济学是经济学的两个重要分支。关于运输价格的理论学说观点较多, 大概分三类[1]: 运输成本理论、运输价值论和边际成本论。运输成本理论亦即总收入必须足以支付运输业务一切成本, 运价必须反映价值, 否则运输业的经营活动无法维持, 更不可能扩大再生产。可是交通运输业, 尤其是铁路建设需巨额投资, 分对象所耗费成本很难计算, 总的运输收支的平衡就更难得到, 因此运输成本理论在现实中会遇到很多困难。运输价值理论被称为负担力主义, 根据运输对象的负担能力决定运价, 主张运价上的差别[2]。本文通过讨论不同市场结构中独立的运输公司运用差别价格产生的利益, 探讨其对于铁路运输价格决策的意义。

    厂商如果在同一时期对同一种商品向不同的购买者或购买不同数量的购买者索取两种或两种以上不同价格, 这就是差别化价格。即使商品不完全相同, 如果其价格差别不能反映成本差别, 也称为差别价格[3]。它遵循支付意愿原则, 因而与不同水平的弹性相关。在完全竞争环境下, 大量公司生产完全相同的产品, 资源是完全可移动的, 消费和生产决策的信息是完全的, 所有市场环节都是可以自由出入的, 供应商是价格接受者。运输商不仅没有可行的经济上的战略选择, 也无法设定最优价格。只有那些有能力将价格定在边际成本之上的厂商才有可能实施差别价格策略。

    垄断者和不完全竞争者将价格定在边际成本之上的能力也被称为市场权力。是什么决定了垄断者的市场权力呢?一个垄断者会将其产量增加到单位产品的边际成本等于其边际收益的那一点[4,5]。边际收益是增加一个单位产品给总收益带来的变化, 并可一般性地表示为

    式中: MR为边际收益; PT分别为价格和交通需求量; ETP为交通需求的价格弹性。边际成本与边际收益的交点决定了垄断者的最佳产量

    式中: STVC为短期变动总成本; wr分别为劳动和资本的价格; γ为技术水平的指数; K为总投资水平; k为固定总投资不变; MC为边际成本。

    式(2)的左边表示价格高出边际成本的部分占价格的比例, 反映了垄断者将价格定在高于边际成本处的能力, 也是市场权力。从式(2)可看到, 市场权力依赖于需求的价格弹性, 市场需求越是缺乏弹性, 垄断者的市场权力越大, 因此那些决定市场需求价格弹性的因素也就决定了市场权力, 相近的替代品数量和该公司的市场份额是两个因素。一般相近替代品数量越大和公司占有的市场份额越少, 需求的价格弹性越高, 应用到完全竞争中, 就得到了需求完全弹性的预期结果, 因每个完全竞争的公司占有总市场的份额都很小, 并且生产无差异产品。在另一个极端, 垄断者的市场份额为1, 它的价格弹性完全取决于其产品与可能的替代品的差别, 几乎没有替代品时, 价格弹性几乎为零。寡头和垄断竞争者的需求弹性位于两个极端之间, 其市场权力也位于两者之间[6]

    不管产生垄断的原因是生产的经济性还是政府管制, 对于讨论的问题都一样, 只要论述完全垄断者的价格差别策略效果, 就能说明寡头与垄断竞争者的行为, 因为其市场权力介于前两者之间, 在高于边际成本处定价的能力也处于两者之间。

    垄断者常被当成唯一价格设定者。模型还假设一个群体中每个消费者为交通产品T支付相同的价格[7], 另一方面, 假设垄断者拥有选择差别价格的权力。尽管垄断者可以以不同的价格出售产品, 这种价格差异不是基于成本的, 那么垄断者能用差别价格使其收益增加吗?

    为了能比较独立地分析这个问题, 举一个实例[8]。假设一条固定航线上有一家垄断公司提供旅客运输服务, 以较高价格向商务人员, 较低价格向私人提供客运服务, 据此, 航空公司的差别价格是建立在旅行目的上。航空公司的理由是私人旅行者在旅行时间、旅行方式和目的地上都有较多的替代品可选择, 他们将要比那些没有多少替代品可选择的公务旅行者对价格更敏感。一名商务人员常常要在特定时间到达指定目的地。航空公司真的可以通过向商务旅行者收取比私人旅行者更高价格获得利润最大化吗?公司的利润最大化的战略又是什么呢?根据式(1)

    式中: bv分别为商务和私人旅行者。假设再生产单位商务旅行与休闲旅行的边际成本相同, 利润最大化的垄断者一定使与商务和休闲旅行相关的边际收益相同[3], 即当

    时利润达到最大。假设航空公司的价格策略是商务旅行价格高于休闲旅行价格, 即Pb > Pv, 为了保证式(4)成立, 必须要使

    考虑到ETP < 0, 式(5)说明垄断者给更具刚性的细分市场设置一个更高的价格, 也就是说不太敏感的市场用较高的价格[7]。另一种说法是, 市场对价格越敏感, 边际成本与价格的差就越小, 那么所采用的向商务旅行者以更高价格出售旅行产品的价格策略是合乎垄断利润最大化理性的, 用图 1可阐述这种战略。假设旅行边际成本是不变的, 并且等于商务和私人休闲旅行的边际成本, 其他因素相同时, 私人旅行者对价格更敏感, 不太愿意接受偏离边际成本许多的价格; 商务旅行者的敏感度较低, 他们比前者更愿为同样的旅程支付更高的价格。

    图  1  差别价格与统一边际成本
    Figure  1.  Discriminate price and unified marginal cost

    图 1中两个关于差别价格的必要条件是绝对的, 首先需求市场的价格弹性要能相互区分。在上例中, 若两类旅行者对价格变化的敏感度相同, 即ETPb=ETPv, 则每个细分市场的价格必须一样, 差别价格将不会增加利润。第二, 两个市场要分开, 就是说叫高价市场里的人不可能买到低价市场的物品。一般情况下, 航空公司无法把商务旅行者与私人旅行者区分开。有的公司通过强行限制停留时间把两者分开, 因为大多数商务旅行都是一个较短的时期, 这就有效地阻止商务人员到较低的价格市场中来[8]。另一项策略是预定票制度。西方国家很多航线要求乘客至少提前14 d预定, 而改变预定计划要受重罚, 这也是为了限制商务人员进入低价市场, 因为商务人员常常在临走之前没多长时间才能决定, 而度假者是早就计划好了的。不过货运市场要作到这两点较容易。式(4)中的利润最大化平衡条件说明了若垄断者设置价格时忽略了两个市场的需求弹性, 其利益就达不到最优。

    上例说明同一边际成本但不同价格对利润正的影响。如设垄断者面临着不同的边际成本, 可以通过设置统一价格提高其利润的。由于每个细分市场利润在边际收益等于边际成本处最大, 而假设提供一个商务人员旅行的边际成本要小于给私人旅行者的, 则式(4)就变成

    式中: P没有下标, 是因为假设垄断者给两个市场制定一样的价格。将式(6)重写为

    这与式(5)是一样的条件, 但不要把统一价格与没有差别价格相混淆。当边际成本不同, 而以同样价格出售时就与相同成本不同价格的差别价格是等同的, 因为在更富于弹性的市场里的价格与边际成本之差要小于较缺乏弹性的市场里的价格与边际成本差(图 2)。因此, 与单一价格策略相比, 垄断者可通过利用市场之间需求价格弹性差别来提高利润。通过这种方式, 价格与边际成本的差与相关市场的需求价格弹性成反相关关系。

    图  2  不同边际成本统一价格的差别价格策略
    Figure  2.  Discriminate price of different marginal cost and unified price

    虽然关于价格差别的争论没有最后定论, 竞争者不断制造产品差异以保持和加强市场权力[9]。不过有时候某些商品和服务也只有在实行价格差别下才能生产出来, 即当市场上存在两种差别较大的需求市场, 且需求曲线都位于平均总成本曲线之下时, 若不实行价格差别, 就不存在任何使价格大于等于平均总成本的产量, 若实施价格差别就可能使两个细分市场的综合平均价格大于等于平均总成本。

    铁路运输的投资额巨大, 但是短期变动成本占总成本的比例远低于除了管道运输以外的其他运输方式。因此铁路运输的长期平均成本曲线(LAC)相对于其他运输方式的来说离原点要远得多, 也平坦得多, LAC的最低点处产量很高, 一般情况下很难达到。所以铁路公司大多数都运行在LAC最低点的左边, 也就是说继续增加产量会使其平均成本下降。

    为了简单说明问题, 将铁路货物运输市场初步分为低值散装货物运输和制造品运输两个细分市场。尽管这两个细分市场的单位运输成本不一样, 但是价格差别策略的思想还是可以在此得到应用。见图 3, 假设制造品运输需求曲线D2穿过LAC, 说明在单一价格策略下行业仍然是可以生存的, 但是散装货物运输需求曲线D1大部分位于平均成本曲线下, 却大部分位于边际成本曲线Mc1之上。只要需求曲线位于边际成本曲线以上, 增加散装货物运输量就可以补偿全部变动成本和部分固定 成本, 使总产量T3产生的平均价格P3大于平均成本, 并增加了运输公司总利润。因此那些面临市场竞争的铁路运输企业制定价格策略时至少要考虑如下几项工作。

    图  3  铁路货物运输的价格差别策略
    Figure  3.  Discriminate price in railway freight transport

    (1) 将市场进一步细分。

    (2) 估计短期生产函数与成本函数。

    (3) 估计每个细分市场的需求函数, 获得各细分市场的需求弹性(含对相近替代品的交叉弹性)。

    (4) 针对需求弹性和需求曲线有差别地细分市场, 制定不同价格。

  • [1] 蒋贤才, 苏小红. 拥挤交通环境下经典信号控制理论适应性分析[J]. 交通运输系统工程与信息, 2009, 9 (5): 28-33. doi: 10.3969/j.issn.1009-6744.2009.05.005

    JIANG Xian-cai, SU Xiao-hong. Adaptability analysis of classical signal control theory applied in crowded traffic environment[J]. Journal of Transportation Systems Engineering and Information Technology, 2009, 9 (5): 28-33. (in Chinese). doi: 10.3969/j.issn.1009-6744.2009.05.005
    [2] CHEN Shuai-yu, XU Hao, LIU Hong-chao. Timing oversaturated signals: what can we learn from classic and state-ofthe-art signal control models[J]. Journal of Transportation Systems Engineering and Information Technology, 2013, 13 (1): 97-110. doi: 10.1016/S1570-6672(13)60093-8
    [3] GAZIS D C. Optimum control of a system of oversaturated intersections[J]. Operations Research, 1964, 12 (6): 815-831. doi: 10.1287/opre.12.6.815
    [4] DANS G C, GAZIS D C. Optimal control of oversaturated store-and-forward transportation networks[J]. Transportation Science, 1976, 10 (1): 1-19. doi: 10.1287/trsc.10.1.1
    [5] MICHALOPOULOS P G, STEPHANOPOULOS G. Oversaturated signal systems with queue length constraints—Ⅰ: single intersection[J]. Transportation Research, 1977, 11 (6): 413-421. doi: 10.1016/0041-1647(77)90006-5
    [6] MICHALOPOULOS P G, STEPHANOPOULOS G. Oversatured signal systems with queue length constraints—Ⅱ: systems of intersections[J]. Transportation Research, 1977, 11 (6): 423-428. doi: 10.1016/0041-1647(77)90007-7
    [7] MICHALOPOULOS P G, STEPHANOPOULOS G. Optimal control of oversaturated intersections theoretical and practical considerations[J]. Traffic Engineering and Control, 1978, 19 (5): 216-221.
    [8] AHN G H, MACHEMEHL R B. Methodology for traffic signal timing in oversaturated arterial networks[R]. Austin: University of Texas at Austin, 1997.
    [9] CEDER A, RESHETNIK I. An algorithm to minimize queues at signalized intersections[J]. Journal of the Operational Research Society, 2001, 52 (6): 615-622. doi: 10.1057/palgrave.jors.2601138
    [10] LIEBERMAN E B, CHANG J, PRASSAS E S. Formulation of real-time control policy for oversaturated arterials[J]. Transportation Research Record, 2000 (1727): 77-88.
    [11] TALMOR I, MAHALEL D. Signal design for an isolated intersection during congestion[J]. Journal of the Operational Research Society, 2007, 58 (4): 454-466. doi: 10.1057/palgrave.jors.2602146
    [12] LI Min-tang, GAN A C. Signal timing optimization for oversaturated networks using TRANSYT-7F[J]. Transportation Research Record, 1999 (1683): 118-126.
    [13] CRABTREE M R. Application guide 44: MOVA traffic control manual[R]. Reading: Transportation Research Laboratory, 2005.
    [14] DIAKAKI C. Signal management in real time for urban traffic networks[R]. Chania: Technical University of Crete, 2002.
    [15] DENNEY R W, HEAD L, SPENCER K. Signal timing under saturated conditions[R]. Washington DC: Federal Highway Administration of US Department of Transportation, 2008.
    [16] SONG Xian-min, TAO Peng-fei, CHEN Li-gang, et al. Offset optimization based on queue length constraint for saturated arterial intersections[J]. Discrete Dynamics in Nature and Society, 2012 (2012): 1-13.
    [17] 李岩, 赵志宏, 李鹏飞, 等. 过饱和状态交通信号控制方法综述[J]. 交通运输工程学报, 2013, 13 (4): 116-126. doi: 10.3969/j.issn.1671-1637.2013.04.017

    LI Yan, ZHAO Zhi-hong, LI Peng-fei, et al. Review of traffic signal control methods under over-saturated conditions[J]. Journal of Traffic and Transportation Engineering, 2013, 13 (4): 116-126. (in Chinese). doi: 10.3969/j.issn.1671-1637.2013.04.017
    [18] 廖明军, 周庆华, 王凯英, 等. 饱和交叉口信号配时研究[J]. 森林工程, 2005, 21 (1): 67-68. doi: 10.3969/j.issn.1001-005X.2005.01.024

    LIAO Ming-jun, ZHOU Qing-hua, WANG Kai-ying, et al. Signal timing of saturated intersection[J]. Forest Engineering, 2005, 21 (1): 67-68. (in Chinese). doi: 10.3969/j.issn.1001-005X.2005.01.024
    [19] 裴玉龙, 蒋贤才. 饱和交通状态下的绿信比优化及其应用研究[J]. 哈尔滨工业大学学报, 2005, 37 (11): 1499-1502. doi: 10.3321/j.issn:0367-6234.2005.11.013

    PEI Yu-long, JIANG Xian-cai. Green ratio optimizing and application in saturated traffic flow[J]. Journal of Harbin Institute of Technology, 2005, 37 (11): 1499-1502. (in Chinese). doi: 10.3321/j.issn:0367-6234.2005.11.013
    [20] 陈昱光. 城市道路交通瓶颈信号控制方法研究[D]. 长春: 吉林大学, 2008.

    CHEN Yu-guang. Research on signal control methods of traffic bottlenecks in city road network[D]. Changchun: Jilin University, 2008. (in Chinese).
    [21] 唐德华, 许伦辉, 林泉. 过饱和信号交叉口的多目标控制模型[J]. 科学技术与工程, 2009, 9 (19): 5726-5729. doi: 10.3969/j.issn.1671-1815.2009.19.022

    TANG De-hua, XU Lun-hui, LIN Quan. Multi-objective control model of over-saturated signalized intersection[J]. Science Technology and Engineering, 2009, 9 (19): 5726-5729. (in Chinese). doi: 10.3969/j.issn.1671-1815.2009.19.022
    [22] 陈娟, 袁长亮. 城市过饱和路网的偏好多目标相容优化控制[J]. 计算机工程与应用, 2011, 47 (10): 13-16, 45. doi: 10.3778/j.issn.1002-8331.2011.10.004

    CHEN Juan, YUAN Chang-liang. Urban oversaturated traffic network control based on preference multi-objective compatible optimization control[J]. Computer Engineering and Applications, 2011, 47 (10): 13-16, 45. (in Chinese). doi: 10.3778/j.issn.1002-8331.2011.10.004
    [23] SHEPHERD S P. A review of traffic signal control[R]. Leeds: University of Leeds, 1992.
    [24] CHEN Shuai-yu. Real-time traffic signal control for oversaturated networks[D]. Lubbock: Texas Tech University, 2007.
    [25] ABOUDOLAS K, PAPAGEORGIOU M, KOSMATOPOULOS E. Store-and-forward based methods for the signal control problem in large-scale congested urban road networks[J]. Transportation Research Part C: Emerging Technologies, 2009, 17 (2): 163-174. doi: 10.1016/j.trc.2008.10.002
    [26] 贾琰. 基于近似动态规划的交通控制算法的研究[D]. 北京: 北京交通大学, 2008.

    JIA Yan. Traffic control algorithm based on approximate dynamic programming[D]. Beijing: Beijing Jiaotong University, 2008. (in Chinese).
    [27] CHANG T H, LIN J T. Optimal signal timing for an oversaturated intersection[J]. Transportation Research Part B: Methodological, 2000, 34 (6): 471-491. doi: 10.1016/S0191-2615(99)00034-X
    [28] CHANG T H, SUN G Y. Modeling and optimization of an oversaturated signalized network[J]. Transportation Research Part B: Methodological, 2004, 38 (8): 687-707. doi: 10.1016/j.trb.2003.08.002
    [29] KIM Y, MESSER C J. Traffic signal timing models for oversaturated signalized interchanges[R]. Austin: Texas Transportation Institute, 1992.
    [30] CHANG J. Real-time traffic control policy for oversaturated arterials[D]. New York: New York University, 2000.
    [31] LO H K, CHOW A H F. Control strategies for oversaturated traffic[J]. Journal of Transportation Engineering, 2004, 130 (4): 466-478. doi: 10.1061/(ASCE)0733-947X(2004)130:4(466)
    [32] PARK B, MESSER C J, URBANIK T. Traffic signal optimization program for oversaturated conditions: genetic algorithm approach[J]. Transportation Research Record, 1999 (1683): 133-142.
    [33] PARK B, MESSER C J, URBANIK T. Enhanced genetic algorithm for signal-timing optimization of oversaturated intersections[J]. Transportation Research Record, 2000 (1727): 32-41.
    [34] ABU-LEBDEH G. Development of dynamic traffic signal control procedures for oversaturated arterials and genetic algorithms solutions[D]. Urbana: University of Illinois at UrbanaChampaign, 1999.
    [35] ABU-LEBDEH G, BENEKOHAL R F. Genetic algorithms for traffic signal control and queue management of oversaturated twoway arterials[J]. Transportation Research Record, 2000 (1727): 61-67.
    [36] ABU-LEBDEH G, BENEKOHAL R F. Signal coordination and arterial capacity in oversaturated conditions[J]. Transportation Research Record, 2000 (1727): 68-76.
    [37] ABU-LEBDEH G, BENEKOHAL R F. Design and evaluation of dynamic traffic management strategies for congested conditions[J]. Transportation Research Part A: Policy and Practice, 2003, 37 (2): 109-127. doi: 10.1016/S0965-8564(02)00006-X
    [38] GIRIANNA M. Dynamic signal coordination models for a network with oversaturated intersections[D]. Urbana: University of Illinois at Urbana-Champaign, 2002.
    [39] GIRIANNA M, BENEKOHAL R F. Dynamic signal coordination for networks with oversaturated intersections[J]. Transportation Research Record, 2002 (1811): 122-130.
    [40] GIRIANNA M, BENEKOHAL R F. Using genetic algorithms to design signal coordination for oversaturated networks[J]. Journal of Intelligent Transportation Systems, 2004, 8 (2): 117-129. doi: 10.1080/15472450490435340
    [41] HAJBABAIE A, MEDINA J C, BENEKOHAL R F. Traffic signal coordination and queue management in oversaturated intersection[R]. Urbana: University of Illinois at UrbanaChampaign, 2011.
    [42] KOVVALI V G, MESSER C J, CHAUDHARY N A, et al. Program for optimizing diamond interchanges in oversaturated conditions[J]. Transportation Research Record, 2002 (1811): 166-176.
    [43] 陈娟, 徐立鸿, 袁长亮. 分层控制算法在过饱和交通干线控制中的应用[J]. 系统仿真学报, 2008, 20 (15): 4122-4127, 4131. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ200815049.htm

    CHEN Juan, XU Li-hong, YUAN Chang-liang. Hierarchy control algorithm and its application in urban arterial control problem[J]. Journal of System Simulation, 2008, 20 (15): 4122-4127, 4131. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ200815049.htm
    [44] 陈娟, 徐立鸿, 袁长亮. 多目标相容控制在过饱和相邻交叉口控制中的应用[J]. 信息与控制, 2008, 37 (4): 487-493, 499. doi: 10.3969/j.issn.1002-0411.2008.04.019

    CHEN Juan, XU Li-hong, YUAN Chang-liang. Application of multi-objective compatible control to oversaturated adjacent intersection control[J]. Information and Control, 2008, 37 (4): 487-493, 499. (in Chinese). doi: 10.3969/j.issn.1002-0411.2008.04.019
    [45] MAGHREBI F. On a hopfield net arising in the modelling and control of over-saturated signalized intersections[J]. Neural Processing Letters, 1999, 10 (3): 161-169. doi: 10.1023/A:1018789805767
    [46] XU Jing, YU Wen-sheng, YI Jian-qiang, et al. Traffic signal timing with neural dynamic optimization[C]//LIU De-rong, FEI Shu-min, HOU Zeng-guang, et al. Proceeding of Advances in Neural Networks. Nanjing: Springer, 2007: 358-367.
    [47] GEGOV A. Multilevel intelligent fuzzy control of oversaturated urban traffic networks[J]. International Journal of Systems Science, 1994, 25 (6): 967-978. doi: 10.1080/00207729408929010
    [48] ZHANG Lin, LI Hong-long, PREVEDOUROS P D. Signal control for oversaturated intersections using fuzzy logic[C]//ASCE. First International Symposium on Transportation and Development Innovative Best Practices. Beijing: ASCE, 2008: 179-184.
    [49] ABBAS S A, SHERAZ S M, NOOR H. Fuzzy rule based traffic signal control system for oversaturated intersections[C]//IEEE. 2009International Conference on Computational Intelligence and Natural Computing. Wuhan: IEEE, 2009: 162-165.
    [50] 于泉, 荣建. 基于模糊逻辑的过饱和交叉口定周期配时方案优化[J]. 北京工业大学学报, 2007, 33 (11): 1173-1176. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD200711013.htm

    YU Quan, RONG Jian. Fixed timing plan optimization for oversaturated intersection based on fuzzy logic[J]. Journal of Beijing University of Technology, 2007, 33 (11): 1173-1176. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD200711013.htm
    [51] MIZUNO K, NISHIHARA S. Distributed constraint satisfaction for urban traffic signal control[J]. Lecture Notes in Computer Science, 2007 (4798): 73-84.
    [52] LI Hong-long. Traffic adaptive control for isolated, oversaturated intersections[D]. Honolulu: University of Hawaii, 2002.
    [53] LI Hong, PREVEDOUROS P D. Traffic adaptive control for oversaturated isolated intersections: model development and simulation testing[J]. Journal of Transportation Engineering, 2004, 130 (5): 594-601. doi: 10.1061/(ASCE)0733-947X(2004)130:5(594)
    [54] ZANG Li-lin, HU Pei-feng, ZHU Wen-xing. Study on dynamic coordinated control of traffic signals for oversaturated arterials[J]. Journal of Information and Computational Science, 2012, 9 (12): 3625-3632.
    [55] GREEN D H. Control of oversaturated intersections[J]. Operational Research Quarterly, 1967, 18 (2): 161-173. doi: 10.1057/jors.1967.27
    [56] MESSER C J. Extension and application of Prosser-Dunne model to traffic operation analysis of oversaturated, closely spaced signalized intersections[J]. Transportation Research Record, 1998 (1646): 106-114.
    [57] MESSER C J. Simulation studies of traffic operations at oversaturated, closely spaced signalized intersections[J]. Transportation Research Record, 1998 (1646): 115-123.
    [58] BRETHERTON D, BODGER M, COWLING J. SCOOT—managing congestion, control and communications[J]. Traffic Engineering and Control, 2006, 47 (3): 88-92.
  • 加载中
计量
  • 文章访问数:  747
  • HTML全文浏览量:  150
  • PDF下载量:  1098
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-03
  • 刊出日期:  2013-12-25

目录

/

返回文章
返回