留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速列车转向架故障的经验模态熵特征分析

秦娜 王开云 金炜东 黄进 孙永奎

秦娜, 王开云, 金炜东, 黄进, 孙永奎. 高速列车转向架故障的经验模态熵特征分析[J]. 交通运输工程学报, 2014, 14(1): 57-64.
引用本文: 秦娜, 王开云, 金炜东, 黄进, 孙永奎. 高速列车转向架故障的经验模态熵特征分析[J]. 交通运输工程学报, 2014, 14(1): 57-64.
QIN Na, WANG Kai-yun, JIN Wei-dong, HUANG Jin, SUN Yong-kui. Fault feature analysis of high-speed train bogie based on empirical mode decomposition entropy[J]. Journal of Traffic and Transportation Engineering, 2014, 14(1): 57-64.
Citation: QIN Na, WANG Kai-yun, JIN Wei-dong, HUANG Jin, SUN Yong-kui. Fault feature analysis of high-speed train bogie based on empirical mode decomposition entropy[J]. Journal of Traffic and Transportation Engineering, 2014, 14(1): 57-64.

高速列车转向架故障的经验模态熵特征分析

基金项目: 

国家自然科学基金项目 61134002

国家自然科学基金项目 61075104

中央高校基本科研业务费专项资金项目 SWJTU11BR039

中央高校基本科研业务费专项资金项目 SWJTU11ZT06

详细信息
    作者简介:

    秦娜(1978-), 女, 河南许昌人, 西南交通大学工学博士研究生, 从事智能信息处理与模式识别研究

    金炜东(1959-), 男, 安徽桐城人, 西南交通大学教授, 工学博士

  • 中图分类号: U279.3

Fault feature analysis of high-speed train bogie based on empirical mode decomposition entropy

More Information
  • 摘要: 针对故障发生时高速列车转向架振动信号的特点, 提出了基于聚合经验模态分解和5种信息熵相结合的特征提取方法。首先将振动信号进行聚合经验模态分解, 有效地避免了模态混叠问题, 然后对分解得到的本征模态函数提取反映信号复杂度的经验模态熵特征。利用该方法对高速列车转向架正常与空气弹簧、横向减振器、抗蛇行减振器故障4种工况下280个样本数据进行特征分析, 随机取60%为训练样本, 其余40%为测试样本。分析结果表明: 分解过程不需要选择基函数和分解层数, 因此, 此方法具有良好的自适应性。在运行速度为200km·h-1时, 识别率大于95%, 证明了该特征提取方法对于高速列车转向架故障振动信号分析的有效性。

     

  • 图  1  实测轨道激扰谱

    Figure  1.  Measuring orbital turbulence spectrums

    图  2  四种工况下的时域信号与幅值谱

    Figure  2.  Time domain signals and amplitude spectrums under four working conditions

    图  3  原始信号

    Figure  3.  Original signal

    图  4  IMF 1的分解结果

    Figure  4.  Decomposition results of IMF 1

    图  5  IMF 2的分解结果

    Figure  5.  Decomposition results of IMF 2

    图  6  IMF 3的分解结果

    Figure  6.  Decomposition results of IMF 3

    图  7  IMF 4的分解结果

    Figure  7.  Decomposition results of IMF 4

    图  8  IMF 5的分解结果

    Figure  8.  Decomposition results of IMF 5

    图  9  IMF 6的分解结果

    Figure  9.  Decomposition results of IMF 6

    图  10  样本分布

    Figure  10.  Sample distribution

    图  11  信号的处理流程

    Figure  11.  Flowchart of signal processing

    表  1  不同工况下经验模态熵

    Table  1.   Empirical mode decomposition entropies under different working conditions

    下载: 导出CSV

    表  2  不同位置的故障识别率

    Table  2.   Fault recognition rates at different positions

    下载: 导出CSV

    表  3  不同特征提取方法的识别率对比

    Table  3.   Comparison of fault recognition rates for different feature extraction methods

    下载: 导出CSV
  • [1] 丁建明, 林建辉, 赵洁, 等. 车辆悬挂弹簧故障检测的能量传递特性比较法[J]. 交通运输工程学报, 2013, 13 (4): 51-55, 62. doi: 10.3969/j.issn.1671-1637.2013.04.008

    DING Jian-ming, LIN Jian-hui, ZHAO Jie, et al. Comparison method of energy transfer characteristics for fault detection of vehicle suspension spring[J]. Journal of Traffic and Transportation Engineering, 2013, 13 (4): 51-55, 62. (in Chinese). doi: 10.3969/j.issn.1671-1637.2013.04.008
    [2] 颜秋, 刘永明. 基于MATLAB/Simulink的车辆建模与故障分析[J]. 华东交通大学学报, 2012, 29 (5): 13-17. https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT201205004.htm

    YAN Qiu, LIU Yong-ming. The analysis of vehicle model establishment and malfunction based on MATLAB/Simulink[J]. Journal of East China Jiaotong University, 2012, 29 (5): 13-17. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT201205004.htm
    [3] 韩清鹏. 利用EEG信号的小波包变换与非线性分析实现精神疲劳状态的判定[J]. 振动与冲击, 2013, 32 (2): 182-188. doi: 10.3969/j.issn.1000-3835.2013.02.035

    HAN Qing-peng. Evaluation of human mental stress states based on wavelet package transformation and nonlinear analysis of EEG signals[J]. Journal of Vibration and Shock, 2013, 32 (2): 182-188. (in Chinese). doi: 10.3969/j.issn.1000-3835.2013.02.035
    [4] 黄娟, 黄纯, 江亚群, 等. 基于小波包近似熵的线路故障性质辨识方法[J]. 仪器仪表学报, 2012, 33 (9): 2009-2015. doi: 10.3969/j.issn.0254-3087.2012.09.013

    HUANG Juan, HUANG Chun, JIANG Ya-qun, et al. Identification method of fault characteristics in transmission lines based on wavelet packet and approximate entropy[J]. Chinese Journal of Scientific Instrument, 2012, 33 (9): 2009-2015. (in Chinese). doi: 10.3969/j.issn.0254-3087.2012.09.013
    [5] SESHADRINATH J, SINGH B, PARNIGRAHI B K. Vibration analysis based interturn fault diagnosis in induction machines[J]. IEEE Transactions on Industrial Informatics. 2014, 10 (1): 340-350.
    [6] WU Z H, HUANG N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[R]. Calverton: Center for Ocean-Land-Atmosphere Studies, 2009.
    [7] WU Z H, HUANG N E. A study of the characteristics of white noise using the empirical mode decomposition method[C]∥The Royal Society. Proceedings of the Royal Society, Series A: Mathematical, Physical and Engineering Sciences. London: The Royal Society, 2004: 1597-1611.
    [8] 胡爱军, 马万里, 唐贵基. 基于集成经验模态分解和峭度准则的滚动轴承故障特征提取方法[J]. 中国电机工程学报, 2012, 32 (11): 106-111. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201211016.htm

    HU Ai-jun, MA Wan-li, TANG Gui-ji. Rolling bearing fault feature extraction method based on ensemble empirical mode decomposition and kurtosis criterion[J]. Proceedings of the CSEE, 2012, 32 (11): 106-111. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201211016.htm
    [9] LEI Ya-guo, HE Zheng-jia, ZI Yan-yang. EEMD method and WNN for fault diagnosis of locomotive roller bearings[J]. Expert Systems with Applications, 2011, 38 (6): 7334-7341.
    [10] ZVOKELJ M, ZUPAN S, PREBIL I. Non-linear multivariate and multiscale monitoring and signal denoising strategy using kernel principal component analysis combined with ensemble empirical mode decomposition method[J]. Mechanical Systems and Signal Processing, 2011, 25 (7): 2631-2653.
    [11] 张学清, 梁军. 基于EEMD-近似熵和储备池的风电功率混沌时间序列预测模型[J]. 物理学报, 2013, 62 (5): 76-85. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201305009.htm

    ZHANG Xue-qing, LIANG Jun. Chaotic time series prediction model of wind power based on ensemble empirical mode decomposition-approximate entropy and reservoir[J]. Acta Physica Sinica, 2013, 62 (5): 76-85. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201305009.htm
    [12] HUANG Jian, HU Xiao-guang, GENG Xin. An intelligent fault diagnosis method of high voltage circuit breaker based on improved EMD energy entropy and multi-class support vector machine[J]. Electric Power Systems Research, 2011, 81 (2): 400-407.
    [13] LABATE D, FORESTA F L, MORABITO G, et al. Entropic measures of EEG complexity in alzheimer's disease through a multivariate multiscale approach[J]. IEEE Sensors Journal, 2013, 13 (9): 3284-3292.
    [14] HE Zheng-you, CHEN Xiao-qing, LUO Guo-ming. Wavelet entropy measure definition and its application for transmission line fault detection and identification, partⅠ: definition and methodology[C]∥IEEE. 2006International Conference on Power System Technology. Chongqing: IEEE, 2006: 1-6.
    [15] AN Xue-li, JIANG Dong-xiang, LI Shao-hua, et al. Application of the ensemble empirical mode decomposition and Hilbert transform to pedestal looseness study of direct-drive wind turbine[J]. Energy, 2011, 36 (9): 5508-5520.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  801
  • HTML全文浏览量:  126
  • PDF下载量:  2003
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-21
  • 刊出日期:  2014-02-25

目录

    /

    返回文章
    返回