留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

汽车主动安全关键参数联合估计方法

宋翔 李旭 张为公 蔡凤田 吴明明

宋翔, 李旭, 张为公, 蔡凤田, 吴明明. 汽车主动安全关键参数联合估计方法[J]. 交通运输工程学报, 2014, 14(1): 65-74.
引用本文: 宋翔, 李旭, 张为公, 蔡凤田, 吴明明. 汽车主动安全关键参数联合估计方法[J]. 交通运输工程学报, 2014, 14(1): 65-74.
SONG Xiang, LI Xu, ZHANG Wei-gong, CAI Feng-tian, WU Ming-ming. Joint estimation method of key parameters for automotive active safety[J]. Journal of Traffic and Transportation Engineering, 2014, 14(1): 65-74.
Citation: SONG Xiang, LI Xu, ZHANG Wei-gong, CAI Feng-tian, WU Ming-ming. Joint estimation method of key parameters for automotive active safety[J]. Journal of Traffic and Transportation Engineering, 2014, 14(1): 65-74.

汽车主动安全关键参数联合估计方法

基金项目: 

国家自然科学基金项目 61273236

江苏省自然科学基金项目 BK2010239

高等学校博士学科点专项科研基金项目 200802861061

"十一五"国家科技支撑计划项目 2009BAG13A04

详细信息
    作者简介:

    宋翔(1984-), 男, 安徽岳西人, 东南大学工学博士研究生, 从事汽车主动安全研究

    张为公(1959-), 男, 浙江杭州人, 东南大学教授, 工学博士

  • 中图分类号: U463.5

Joint estimation method of key parameters for automotive active safety

More Information
  • 摘要: 针对汽车主动安全系统的需求, 提出了一种包括纵向、侧向车速与附着系数的汽车主动安全参数的联合估计方法。基于3自由度车辆动力学模型和刷子轮胎模型, 建立不同道路附着系数条件下的扩展卡尔曼滤波模型, 利用交互多模型算法实现纵向、侧向车速的自适应估计, 并根据计算出的各模型概率实现道路附着系数的实时估计。计算结果表明: 该方法能在不同道路附着系数条件下进行车速的准确估计, 纵向车速估计误差小于1%, 侧向车速估计误差小于5%, 与扩展卡尔曼方法相比误差减小了50%以上, 且能够实时给出道路附着系数估计值, 估计误差小于0.1, 对路面突变的响应时间低于2s。

     

  • 图  1  车轮纵向力与滑移率关系

    Figure  1.  Relationship between longitudinal force and slip ratio of tire

    图  2  交互多模型算法流程

    Figure  2.  Flowchart of interacting multiple model method

    图  3  单一附着系数路面本文算法估计结果

    Figure  3.  Estimation result of proposed algorithm without change of road friction coefficient

    图  4  单一附着系数路面EKF算法估计结果

    Figure  4.  Estimation result of EKF algorithm without change of road friction coefficient

    图  5  附着系数突变路面本文算法估计结果

    Figure  5.  Estimation result of proposed algorithm with change of road friction coefficient

    图  6  附着系数突变路面仿真车辆运行工况参数

    Figure  6.  Vehicle parameters in simulation under running condition with change of road friction coefficient

    图  7  附着系数突变路面车辆横摆角速度估计结果

    Figure  7.  Estimation result of vehicle yaw rate with change of road friction coefficient

    图  8  单一附着系数路面试验车辆运行工况参数

    Figure  8.  Vehicle parameters in experiment under running condition with unchanging road friction coefficient

    图  9  单一附着系数路面试验估计结果

    Figure  9.  Estimation result in experiment with unchanging road friction coefficient

    图  10  附着系数突变路面试验估计结果

    Figure  10.  Estimation result in experiment with changing road friction coefficient

    图  11  附着系数突变路面试验车辆运行工况参数

    Figure  11.  Vehicle parameters in experiment under running condition with changing road friction coefficient

    表  1  仿真车辆参数

    Table  1.   Parameters of vehicle in simulation

    下载: 导出CSV

    表  2  单一附着系数路面上估计效果对比

    Table  2.   Estimation effect comparison without change of road friction coefficient

    下载: 导出CSV

    表  3  附着系数突变路面上估计效果的对比

    Table  3.   Estimation effect comparison with change of road friction coefficient

    下载: 导出CSV

    表  4  试验车辆参数

    Table  4.   Parameters of vehicle in experiment

    下载: 导出CSV
  • [1] LEUNG K T, WHIDBORNE J F, PURDY D, et al. A review of ground vehicle dynamic state estimations utilising GPS/INS[J]. Vehicle System Dynamics, 2011, 49 (1/2): 29-58.
    [2] 余卓平, 高晓杰. 车辆行驶过程中的状态估计问题综述[J]. 机械工程学报, 2009, 45 (5): 20-33. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200905005.htm

    YU Zhuo-ping, GAO Xiao-jie. Review of vehicle state estimation problem under driving situation[J]. Journal of Mechanical Engineering, 2009, 45 (5): 20-33. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200905005.htm
    [3] CHEN B C, HSIEH F C. Sideslip angle estimation using extended Kalman filter[J]. Vehicle System Dynamics, 2008, 46 (S1): 353-364.
    [4] 郑太雄, 马付雷. 基于逻辑门限值的汽车ABS控制策略[J]. 交通运输工程学报, 2010, 10 (2): 69-74. doi: 10.3969/j.issn.1671-1637.2010.02.013

    ZHENG Tai-xiong, MA Fu-lei. Automotive ABS control strategy based on logic threshold[J]. Journal of Traffic and Transportation Engineering, 2010, 10 (2): 69-74. (in Chinese). doi: 10.3969/j.issn.1671-1637.2010.02.013
    [5] LI L, SONG J, KONG L, et al. Vehicle velocity estimation for real-time dynamic stability comtrol[J]. International Journal of Automative Technology, 2009, 10 (6): 675-685. doi: 10.1007/s12239-009-0080-7
    [6] 赵林辉, 刘志远, 陈虹. 一种车辆状态滑模观测器的设计方法[J]. 电机与控制学报, 2009, 13 (4): 565-570. doi: 10.3969/j.issn.1007-449X.2009.04.017

    ZHAO Lin-hui, LIU Zhi-yuan, CHEN Hong. Design method of sliding model observer for vehicle state[J]. Electric Machines and Control, 2009, 13 (4): 565-570. (in Chinese). doi: 10.3969/j.issn.1007-449X.2009.04.017
    [7] ZHENG Tai-xiong, MA Fu-lei, ZHANG Kai-bi. Estimation of reference vehicle speed based on T-S fuzzy model[J]. Procedia Engineering, 2011, 15: 188-193. doi: 10.1016/j.proeng.2011.08.038
    [8] MELZI S, SABBIONI E. On the vehicle sideslip angle estimation through neural networks: numerical and experimental results[J]. Mechanical Systems and Signal Processing, 2011, 25 (6): 2005-2019. doi: 10.1016/j.ymssp.2010.10.015
    [9] ZONG Chang-fu, HU Dan, ZHENG Hong-yu. Dual extended Kalman filter for combined estimation of vehicle state and road friction[J]. Chinese Journal of Mechanical Engineering, 2013, 26 (2): 313-324.
    [10] 吴利军, 王跃建, 李克强. 面向汽车纵向安全辅助系统的路面附着系数估计方法[J]. 汽车工程, 2009, 31 (3): 239-243. doi: 10.3321/j.issn:1000-680X.2009.03.010

    WU Li-jun, WANG Yue-jian, LI Ke-qiang. Estimation method of road adhesion coefficient for vehicle longitudinal safety assistant system[J]. Automotive Engineering, 2009, 31 (3): 239-243. (in Chinese). doi: 10.3321/j.issn:1000-680X.2009.03.010
    [11] TANELLI M, PIRODDI L, SAVARESI S M. Real-time identification of tire-road friction conditions[J]. IET Control Theory Applications, 2009, 3 (7): 891-906. doi: 10.1049/iet-cta.2008.0287
    [12] HAHN J O, RAJAMANI R, ALEXANDER L. GPS-based real-time identification of tire-road friction coefficient[J]. IEEE Transactions on Control Systems Technology, 2002, 10 (3): 331-343.
    [13] 陈无畏, 刘翔宇, 黄鹤, 等. 车辆转向工况下的路面附着系数估计算法[J]. 汽车工程, 2011, 33 (6): 521-526. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201106015.htm

    CHEN Wu-wei, LIU Xiang-yu, HUANG He, et al. An algorithm for estimating road adhesion coefficient in vehicle steering condition[J]. Automotive Engineering, 2011, 33 (6): 521-526. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201106015.htm
    [14] 赵林辉, 刘志远, 陈虹. 车速和路面附着系数的滚动时域估计[J]. 汽车工程, 2009, 31 (6): 520-525. doi: 10.3321/j.issn:1000-680X.2009.06.008

    ZHAO Lin-hui, LIU Zhi-yuan, CHEN Hong. The estimation of vehicle speed and tire-road adhesion coefficient using moving horizon strategy[J]. Automotive Engineering, 2009, 31 (6): 520-525. (in Chinese). doi: 10.3321/j.issn:1000-680X.2009.06.008
    [15] LI Li, WANG Fei-yue, ZHOU Qun-zhi. Integrated longitudinal and lateral tire/road friction modeling and monitoring for vehicle motion control[J]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7 (1): 1-19.
    [16] TOLEDO-MOREO R, ZAMORA-IZQUIERDO A. Collision avoidance support in roads with lateral and longitudinal maneuver prediction by fusing GPS/IMU and digital maps[J]. Transportation Research Part C: Emerging Technologies, 2010, 18 (4): 611-625.
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  531
  • HTML全文浏览量:  80
  • PDF下载量:  761
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-18
  • 刊出日期:  2014-02-25

目录

    /

    返回文章
    返回