Optimal strategy of container vertical transportation energy structure conversion on port yard
-
摘要: 基于动态规划理论, 以场桥寿命期内的总成本最小为目标函数, 以碳排放量和投资成本为约束条件, 考虑了场桥营运成本和碳排放的动态变化, 建立了港区堆场集装箱垂直运输用能结构改造的离散型动态规划模型。通过逆序法进行求解, 确定了用能结构改造的最优策略。计算结果表明: 当轮胎式集装箱门式起重机役龄为1年时, 应在第6年年初完成用能结构改造, 最优策略下单场桥寿命期内总成本为937.66万元; 当轮胎式集装箱门式起重机役龄为2年时, 应在第5年年初完成用能结构改造, 最优策略下单场桥寿命期内总成本为958.59万元; 当轮胎式集装箱门式起重机役龄大于等于3年时, 应在第2年年初完成用能结构改造, 最优策略下单场桥寿命期内总成本为967.33万元; 当碳排放量限额值小于等于100t时, 应立即进行用能结构改造; 当碳排放量限额值大于400t时, 应在第6年年初完成改造, 相当于不需考虑碳排放约束。碳排放成本仅占营运成本的0.6%~0.7%, 对决策的影响较小, 建议通过提高碳税价格或施加碳排放总量限额的方法减少碳排放。Abstract: Based on the dynamic programming theory, the minimum total cost during crane lifetime was taken as objective function, the carbon emission amount and investment cost were taken as constraint conditions, the dynamic changes of crane operation cost and carbon emission were considered, and the dynamic discrete programming model of container vertical transportation energy structure conversion on port yard was established. The athwart order method was carried out to solve the model, and the optimal strategy of crane energy structure conversion was determined. Calculation result shows that when rubber tire gantry (RTG) is 1 year old, the energy structure conversion should be completed at the start of the sixth year, and the total cost during the total lifetime of single crane under the optimal strategy is 9 376 600 yuan. When RTG is 2 years old, the energy structure conversion should be completed at the start of the fifth year, and the total cost during the total lifetime of single crane under the optimal strategy is 9 585 900 yuan. When RTG is equal to or older than 3 years, the energy structure conversion should be completed at the start of the second year, and the total cost during the total lifetime of single crane under the optimal strategy is 9 673 300 yuan. When the carbon limit value is less than or equal to 100 t, RTG energy structure should be converted immediately. When the carbon limit value is more than 400 t, the energy structure conversion should be completed at the start of the sixth year, and the constraint of carbon emission can be ignored. Because the carbon emission cost only accounts for 0.6-0.7 percent of operation cost and does not affect the decision greatly, it is advised to reduce carbon emission by increasing carbon tax or controlling carbon limit value.
-
表 1 RTG的营运成本
Table 1. Operation cost of RTG
表 2 ERTG的营运成本
Table 2. Operation cost of ERTG
表 3 场桥参数
Table 3. Crane parameters
-
[1] 徐德麟. 上海港节能降耗技术的研究与应用[J]. 水运工程, 2011 (1): 198-202. https://www.cnki.com.cn/Article/CJFDTOTAL-SYGC201101033.htmXU De-lin. Study on and application of energy-saving technique implemented by Shanghai Port[J]. Port and Waterway Engineering, 2011 (1): 198-202. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SYGC201101033.htm [2] 傅其兆. 集装箱码头RTG"油改电"的现状和动向[J]. 港口装卸, 2009 (2): 7-9. doi: 10.3963/j.isan:1000-8969.2009.02.003FU Qi-zhao. Status and trend of RTG with electric driven changed from fuel driven in container terminal[J]. Port Operation, 2009 (2): 7-9. (in Chinese). doi: 10.3963/j.isan:1000-8969.2009.02.003 [3] 姚剑. 天津港集装箱场桥油改电能源省耗[J]. 港口科技, 2011 (9): 48-49. https://www.cnki.com.cn/Article/CJFDTOTAL-GKKJ201006024.htmYAO Jian. Energy saving after electric instead of fuel in Tianjin Port[J]. Science and Technology of Ports, 2011 (9): 48-49. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GKKJ201006024.htm [4] 何勤奋. "油改电"ERTG技术比较和探讨[J]. 港口科技, 2008 (10): 8-12, 16. doi: 10.3969/j.issn.1673-6826.2008.10.004HE Qin-fen. Technical comparison and probing on the ERTG by"electricity instead of oil"[J]. Science and Technology of Ports, 2008 (10): 8-12, 16. (in Chinese). doi: 10.3969/j.issn.1673-6826.2008.10.004 [5] 王龙伟. ERTG特性分析及使用优化研究[D]. 大连: 大连海事大学, 2010.WANG Long-wei. ERTG features analysis and use optimization[D]. Dalian: Dalian Maritime University, 2010. (in Chinese). [6] 郑小楠. RTG"油改电"技术方案探讨[J]. 港口装卸, 2007 (5): 22-24. https://www.cnki.com.cn/Article/CJFDTOTAL-GKZX200705012.htmZHENG Xiao-nan. A design concept of more flexible to petrochemical terminal's technique to fit markets[J]. Port Operation, 2007 (5): 22-24. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GKZX200705012.htm [7] 杨忠. T港集装箱码头"油改电"场桥选型研究[D]. 大连: 大连海事大学, 2009.YANG Zhong. The"oil change electricity"lectotype research of RTG in T Port[D]. Dalian: Dalian Maritime University, 2009. (in Chinese). [8] 王垚. 关于轮胎式集装箱起重机"油改电"节能项目工程的可行性研究[J]. 港口科技, 2010 (3): 38-40. https://www.cnki.com.cn/Article/CJFDTOTAL-GKKJ201003015.htmWANG Yao. Teasibility study on the power saving project of"electricity instead of oil"of the rubber type container gantry crane[J]. Science and Technology of Ports, 2010 (3): 38-40. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GKKJ201003015.htm [9] 刘洪波, 汪锋, 张志平. 集装箱轮胎吊"油改电"技术在港口节能减排中的应用[J]. 水运工程, 2011 (9): 123-125. https://www.cnki.com.cn/Article/CJFDTOTAL-SYGC2011S1031.htmLIU Hong-bo, WANG Feng, ZHANG Zhi-ping. Application of"electricity instead of oil"technology to RTGs for port energy conservation and pollution reduction[J]. Port and Waterway Engineering, 2011 (9): 123-125. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SYGC2011S1031.htm [10] 祁崇波. 集装箱码头堆场装卸设备的节能减排研究[D]. 大连: 大连海事大学, 2010.QI Chong-bo. Research on energy saving and emission reduction on the yard cranes of the container terminal[D]. Dalian: Dalian Maritime University, 2010. (in Chinese). [11] 彭传圣. 电动轮胎式集装箱门式起重机与节能减排[J]. 中国港口, 2010 (8): 60-62. https://www.cnki.com.cn/Article/CJFDTOTAL-GUKO201008041.htmPENG Chuan-sheng. ERTG energy conservation and emission reduction[J]. China Ports, 2010 (8): 60-62. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GUKO201008041.htm [12] 张志伟. 港口流动机械合理更新问题研究[D]. 大连: 大连海事大学, 2010.ZHANG Zhi-wei. Study on port mechanical reasonable update[D]. Dalian: Dalian Maritime University, 2010. (in Chinese). [13] 彭传圣. 集装箱码头碳排放核算方法[J]. 集装箱化, 2012, 23 (7): 14-17. https://www.cnki.com.cn/Article/CJFDTOTAL-JZXH201207007.htmPENG Chuan-sheng. Carbon emission accounting method of container terminal[J]. Containerization, 2012, 23 (7): 14-17. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZXH201207007.htm [14] 苏君利. 大型集装箱码头堆场装卸工艺研究[J]. 水运工程, 2006 (10): 86-90. https://www.cnki.com.cn/Article/CJFDTOTAL-SYGC200610015.htmSU Jun-li. Yard handling technology in large-scale container terminals[J]. Port and Waterway Engineering, 2006 (10): 86-90. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SYGC200610015.htm [15] HARTMAN J C. The parallel replacement problem with demand and capital budgeting constraints[J]. Naval Research Logistics, 2000, 47 (1): 40-56. [16] 阮宁, 李翔, 刘志学. 基于江海直达运输模式和投资约束的长江干散货运优化模型[J]. 交通运输工程学报, 2012, 12 (4): 93-99. http://transport.chd.edu.cn/article/id/201204012RUAN Ning, LI Xiang, LIU Zhi-xue. Optimization model of dry bulk freight in Yangtze River based on river-sea transportation mode and investment constraint[J]. Journal of Traffic and Transportation Engineering, 2012, 12 (4): 93-99. (in Chinese). http://transport.chd.edu.cn/article/id/201204012 [17] MARDIN F, ARAI T. Capital equipment replacement under technological change[J]. The Engineering Economist, 2012, 57 (2): 119-129. [18] ROGERS L J, HARTMAN C J. Equipment replacement under continuous and discontinuous technological change[J]. IMA Journal of Management Mathematics, 2005, 16 (1): 23-36. [19] YATSENKO Y, HRITONENKO N. Network economics and optimal replacement of age structured IT capital[J]. Mathematical Methods of Operations Research, 2007, 65 (3): 483-497. [20] EGGLESTON S, BUENDIA L, MIWA K, et al. 2006IPCC guidelines for national greenhouse gas inventories[R]. Yokosuka: Institute for Global Environmental Strategies, 2006.