留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

车辆通信接入系统的自适应传输模式选择策略

陈婷 赵祥模 代亮 张立成

陈婷, 赵祥模, 代亮, 张立成. 车辆通信接入系统的自适应传输模式选择策略[J]. 交通运输工程学报, 2014, 14(1): 119-126.
引用本文: 陈婷, 赵祥模, 代亮, 张立成. 车辆通信接入系统的自适应传输模式选择策略[J]. 交通运输工程学报, 2014, 14(1): 119-126.
CHEN Ting, ZHAO Xiang-mo, DAI Liang, ZHANG Li-cheng. Adaptive transmission mode selection strategy of vehicle communication access system[J]. Journal of Traffic and Transportation Engineering, 2014, 14(1): 119-126.
Citation: CHEN Ting, ZHAO Xiang-mo, DAI Liang, ZHANG Li-cheng. Adaptive transmission mode selection strategy of vehicle communication access system[J]. Journal of Traffic and Transportation Engineering, 2014, 14(1): 119-126.

车辆通信接入系统的自适应传输模式选择策略

基金项目: 

国家自然科学基金项目 51278058

国家自然科学基金项目 61302150

长江学者和创新团队发展计划项目 IRT0951

国家物联网重大示范工程项目 2012-364-812-105

陕西省自然科学基金项目 2013JQ8044

中央高校基本科研业务费专项资金项目 CHD2011JC159

中央高校基本科研业务费专项资金项目 CHD2011JC056

中央高校基本科研业务费专项资金项目 2013G3243002

中央高校基本科研业务费专项资金项目 2013G1502068

详细信息
    作者简介:

    陈婷(1982-), 女, 陕西西安人, 长安大学讲师, 工学博士, 从事智能交通系统通信服务质量研究

  • 中图分类号: U491

Adaptive transmission mode selection strategy of vehicle communication access system

More Information
    Author Bio:

    CHEN Ting(1982-), female, lecturer, PhD, +86-29-62630049, tchenchd82@126.com

  • 摘要: 为提高智能交通系统(ITS) 有效传输各类信息服务流的能力, 将自适应调制编码(AMC) 和正交频分多址接入(OFDMA) 技术引入车辆通信接入子系统, 提出了一种自适应传输模式选择策略。当车辆行驶在非特殊地理区域或行驶速度低于60km·h-1时, 车辆通信接入系统将启动自适应传输模式选择进程。与典型策略采用固定不变的AMC传输模式信噪比切换阈值相比, 建议策略的切换阈值可变, 且由ITS信息服务流目标分组差错率来决定, 从而使系统在传输不同类型的ITS信息服务流时, 有可能在相同的接入信道状况下采用不同的调制编码模式等级, 进而获得更高的数据有效传输速率。通过数学分析对选择策略的各类服务流目标分组差错率和系统平均有效数据传输速率进行性能评估。分析结果表明: 建议策略能够在传输可靠性和高效性之间做出更好的权衡; 当第1、2、3类ITS信息服务流的目标分组差错率分别为10-6、10-5、10-2时, 建议策略能够在满足传输可靠性要求的同时, 将典型策略的系统平均有效数据传输速率提升8%。

     

  • 图  1  选择策略基本实施架构

    Figure  1.  Basic implementation framework of selection strategy

    图  2  算法流程

    Figure  2.  Algorithm flow

    图  3  第1类ITS信息服务流分组差错率比较

    Figure  3.  Comparison of packet error rates of first class of ITS information service flows

    图  4  第2类ITS信息服务流分组差错率比较

    Figure  4.  Comparison of packet error rates of second class of ITS information service flows

    图  5  第3类ITS信息服务流分组差错率比较

    Figure  5.  Comparison of packet error rates of third class of ITS information service flows

    图  6  平均有效数据传输速率比较

    Figure  6.  Comparison of average effective data transfer rates

    表  1  信令信息

    Table  1.   Signaling informations

    下载: 导出CSV

    表  2  六级调制编码模式

    Table  2.   Modulation and coding modes with 6levels

    下载: 导出CSV

    表  3  ITS信息服务流实例及相应目标分组差错率

    Table  3.   ITS information service flow examples and corresponding target packet error rates

    下载: 导出CSV

    表  4  六级调制编码模式分组差错率曲线拟合参数

    Table  4.   Fitting parameters of packet error rate curves of modulation and coding modes with 6levels

    下载: 导出CSV

    表  5  AMC传输模式SNR切换阈值

    Table  5.   SNR switching thresholds of AMC transmission modes dB

    下载: 导出CSV
  • [1] PAPADIMITRATOS P, LAFORTELLE A, EVENSSEN K, et al. Vehicular communication systems: enabling technologies, applications, and future outlook on intelligent transportation[J]. IEEE Communications Magazine, 2009, 47 (11): 84-95. doi: 10.1109/MCOM.2009.5307471
    [2] IEEE Std 802.11pTM—2010, IEEE standard for information technology—telecommunications and information exchange between systems—local and metropolitan area networks—specific requirements[S].
    [3] IEEE Std 1609.3TM—2007, IEEE trial-use standard for wireless access in vehicular environments (WAVE) —networking services[S].
    [4] ASTM E2213-03—2010, standard specification for telecommunications and information exchange between roadside and vehicle systems—5GHz band dedicated short range communications (DSRC) medium access control (MAC) and physical layer (PHY) specifications[S].
    [5] UZCATEGUI R, ACOSTA-MARUM G. WAVE: a tutorial[J]. IEEE Communications Magazine, 2009, 47 (5): 126-133. doi: 10.1109/MCOM.2009.4939288
    [6] JIANG D, TALIWAL V, MEIER A, et al. Design of 5.9GHz DSRC-based vehicular safety communication[J]. Wireless Communications, 2006, 13 (5): 36-43. doi: 10.1109/WC-M.2006.250356
    [7] CHOU C M, LI Chen-yuan, CHIEN W M, et al. A feasibility study on vehicle-to-infrastructure communication: WiFi vs. WiMAX[C]∥IEEE. 2009IEEE International Conference on Mobile Data Management: Systems, Services and Middleware. Taipei: IEEE, 2009: 397-399.
    [8] REMY G, SENOUCI S M, JAN F, et al. LTE4V2X: LTE for a centralized VANET organization[C]∥IEEE. 2011IEEE Global Telecommunications Conference. Houston: IEEE, 2011: 1-6.
    [9] ABID H, CHUNG T C, LEE S Y, et al. Performance analysis of LTE smartphones-based vehicle-to-infrastructure communication[C]∥IEEE. Proceedings of the 2012 9th International Conference on Ubiquitous Intelligence and Computing and 9th International Conference on Autonomic and Trusted Computing. Fukuoka: IEEE, 2012: 72-78.
    [10] VINEL A. 3GPP LTE versus IEEE 802.11p/WAVE: which technology is able to support cooperative vehicular safety applications?[J]. Wireless Communications Letters, 2012, 1 (2): 125-128. doi: 10.1109/WCL.2012.022012.120073
    [11] MOSYAGIN J. Using 4G wireless technology in the car[C]∥IEEE. 2010 12th International Conference on Transparent Optical Networks. Munich: IEEE, 2010: 1-4.
    [12] GOLDSMITH A J, CHUA S G. Adaptive coded modulation for fading channels[J]. IEEE Transactions on Communications, 1998, 46 (5): 595-602. doi: 10.1109/26.668727
    [13] ALOUINI M S, GOLDSMITH A J. Adaptive modulation over Nakagami fading channels[J]. Wireless Personal Communications, 2000, 13 (1/2): 119-143. doi: 10.1023/A:1008979107539
    [14] MARCELINO H, ZENG Hua-shen, GUAN Yan-bin. Performance analysis of OFDMA system in next generation wireless communication networks[C]∥IEEE. 2010 3rd IEEE International Conference on Computer Science and Information Technology. Chengdu: IEEE, 2010: 335-339.
    [15] TARHINI C, CHAHED T. AMC-aware QoS proposal for OFDMA-based IEEE 802.16 WiMAX systems[C]∥IEEE. 2007IEEE Global Telecommunications Conference. Washington DC: IEEE, 2007: 4780-4784.
    [16] LIU Qing-wen, WANG Xin, GIANNAKIS G B. A crosslayer scheduling algorithm with QoS support in wireless networks[J]. IEEE Transactions on Vehicular Technology, 2006, 55 (3): 839-847. doi: 10.1109/TVT.2006.873832
    [17] LIU Qing-wen, WANG Xin, GIANNAKIS G B. Cross-layer combining of adaptive modulation and coding with truncated ARQ over wireless links[J]. IEEE Transactions on Wireless Communications, 2004, 3 (5): 1746-1755. doi: 10.1109/TWC.2004.833474
    [18] 陈婷, 李建东, 李长乐. WiMAX中基于跨层设计的SNR阈值区间可变式自适应调制编码机制[J]. 中国通信, 2010, 7 (2): 153-159. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTO201002020.htm

    CHEN Ting, LI Jian-dong, LI Chang-le. A novel AMC scheme with alterable SNR threshold intervals based on crosslayer design in WiMAX[J]. China Communications, 2010, 7 (2): 153-159. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTO201002020.htm
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  644
  • HTML全文浏览量:  109
  • PDF下载量:  695
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-18
  • 刊出日期:  2014-02-25

目录

    /

    返回文章
    返回