Real-time temperature field measurement of asphalt pavement based on fiber bragg grating measuring technology
-
摘要: 基于光纤光栅智能测试技术, 建立沥青路面温度信息长期实时监测系统, 以实现沥青路面温度连续监测。采用高精度热电偶进行路面沥青层的温度测试, 用以进行现场光纤光栅温度传感器的修正; 采用光纤光栅温度传感器对沥青路面绝对温度进行实时监测。分析结果表明: 路面内部温度在下午2:00~4:00达到最高值, 凌晨4:00~6:00降至最低值, 且上午9:00~12:00温度上升较快, 下午4:00~6:00温度下降较快; 随沥青路面深度的增加, 沥青路面内部温度变化的幅度与速率均逐步减小, 且达到峰值或谷值的时刻相对滞后; 沥青路面内部温度随着气温的变化而变化, 随季节气候变化而同趋势改变; 全年气温最低值出现在1月初, 之后温度开始逐渐升高。Abstract: Based on fiber bragg grating (FBG) measuring technology, the long-term and real-time temperature monitoring system of temperature information for asphalt pavement was established to continuously monitor asphalt pavement temperature.The temperatures of asphalt pavement layers were measured by using high-precision thermocouples to amend the FBG temperature sensors in-site.The FBG temperature sensor was used to monitor the real-time temperature of asphalt pavement.Analysis result shows that the internal pavement temperature reaches the highest value at 2:00-4:00 PM and drops to the lowest value at 4:00-6:00 AM.At 9:00-12:00 AM, the temperature grows fast and at 4:00-6:00 PM it drops fast.With the increase of asphalt pavement depth, the variation extent and rate of internal temperature decrease gradually and correspondingly, the time to reach peaks or troughs has some delays.The internal temperature of asphalt pavement varies with air temperature and keeps the same change trend with season change.The lowest temperature of asphalt pavement in the whole year appears at the beginning of January and grows gradually afterwards.
-
表 1 沥青路面结构
Table 1. Asphalt pavement structures
表 2 传感器埋设信息
Table 2. Installation informations of sensors
表 3 不同路面深度的温度
Table 3. Temperatures under different pavement depths
-
[1] 苏凯, 孙立军. 沥青路面车辙产生机理[J]. 石油沥青, 2006, 20 (4): 1-6. doi: 10.3969/j.issn.1006-7450.2006.04.001SU Kai, SUN Li-jun. Mechanism of rutting for asphalt pavement[J]. Petroleum Asphalt, 2006, 20 (4): 1-6. (in Chinese). doi: 10.3969/j.issn.1006-7450.2006.04.001 [2] MINHOTO M J C, PAIS J C, PEREIRA P A A. The temperature effect on the reflective cracking of asphalt overlays[J]. Road Materials and Pavement Design, 2008, 9 (4): 615-632. doi: 10.1080/14680629.2008.9690141 [3] 何伟, 徐先东, 姜德生. 聚合物封装的高灵敏度光纤光栅温度传感器及其低温特性[J]. 光学学报, 2004, 24 (10): 1316-1319. doi: 10.3321/j.issn:0253-2239.2004.10.005HE Wei, XU Xian-dong, JIANG De-sheng. High-sensitivity fiber bragg grating temperature sensor with polymer jacket and its low-temperature characteristic[J]. Acta Optica Sinica, 2004, 24 (10): 1316-1319. (in Chinese). doi: 10.3321/j.issn:0253-2239.2004.10.005 [4] 周智, 武湛君, 田石柱, 等. 光纤布喇格光栅温度传感特性的研究[J]. 压电与声光, 2012, 24 (6): 430-433. https://www.cnki.com.cn/Article/CJFDTOTAL-YDSG200206003.htmZHOU Zhi, WU Zhan-jun, TIAN Shi-zhu, et al. Studies on properties of temperature sensing for optical fiber FBGs[J]. Piezoelectrics and Acoustooptics, 2012, 24 (6): 430-433. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YDSG200206003.htm [5] REDDY P S, PRASAD R L N S, SRIMANNARAYANA K, et al. A novel method for high temperature measurements using fiber bragg grating sensor[J]. Optica Applicata, 2010, 11 (3): 685-691. [6] 赵延庆, 白琦峰, 宋宇. 柔性基层沥青路面温度场测量与分析[J]. 中外公路, 2006, 26 (6): 22-25. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL200606007.htmZHAO Yan-qing, BAI Qi-feng, SONG Yu. Measurement and analysis of temperature field in flexible asphalt pavement[J]. Journal of China and Foreign Highway, 2006, 26 (6): 22-25. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL200606007.htm [7] 康海贵, 郑元勋, 蔡迎春, 等. 实测沥青路面温度场分布规律的回归分析[J]. 中国公路学报, 2007, 20 (6): 13-18. doi: 10.3321/j.issn:1001-7372.2007.06.003KANG Hai-gui, ZHENG Yuan-xun, CAI Ying-cun, et al. Regression analysis of actual measurement of temperature field distribution rules of asphalt pavement[J]. China Journal of Highway and Transport, 2007, 20 (6): 13-18. (in Chinese). doi: 10.3321/j.issn:1001-7372.2007.06.003 [8] 李浩天, 贾渝, 白琦峰. 柔性基层沥青路面温度场的预估模型[J]. 武汉理工大学学报, 2010, 32 (24): 84-89. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201024020.htmLI Hao-tian, JIA Yu, BAI Qi-feng. Prediction model on temperature field in flexible asphalt pavement[J]. Journal of Wuhan University of Technology, 2010, 32 (24): 84-89. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201024020.htm [9] BACKSTROM M. Ground temperature in porous pavement during freezing and thawing[J]. Journal of Transportation Engineering, 2000, 126 (2): 375-381. [10] GOLDEN J S, KALOUSH K E. Mesoscale and microscale evaluation of surface pavement impacts on the urban heat island effects[J]. International Journal of Pavement Engineering, 2006, 7 (1): 37-52. doi: 10.1080/10298430500505325 [11] 董泽蛟, 温佳宇, 李生龙. 路用光纤光栅温度传感器标定方法对比分析[J]. 建筑材料学报, 2014, 17 (1): 120-125. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX201401023.htmDONG Ze-jiao, WEN Jia-yu, LI Sheng-long. Comparison analysis of calibration methods for fiber bragg grating temperature sensor used in asphalt pavement[J]. Journal of Building Materials, 2014, 17 (1): 120-125. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX201401023.htm [12] 方友军. 旧水泥路面沥青加铺层温度荷载应力分析[J]. 筑路机械与施工机械化, 2012, 29 (5): 58-59, 62. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX201205043.htmFANG You-jun. Temperature load stress analysis of asphalt overlay on old cement pavement[J]. Road Machinery and Construction Mechanization, 2012, 29 (5): 58-59, 62. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX201205043.htm [13] 曹海波, 陈团结, 陆晶晶, 等. 水泥混凝土桥面自破冰铺装温度场分析[J]. 筑路机械与施工机械化, 2011, 28 (11): 79-81. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX201111043.htmCAO Hai-bo, CHEN Tuan-jie, LU Jing-jing, et al. Analysis on temperature field of self ice-breaking pavement of cement concrete bridge[J]. Road Machinery and Construction Mechanization, 2011, 28 (11): 79-81. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX201111043.htm [14] ZHOU Hai-ping, HOLIKATTI S, VACURA P. Caltrans use of scrap tires in asphalt rubber products: a comprehensive review[J]. Journal of Traffic and Transportation Engineering: English Edition, 2014, 1 (1): 39-48.