留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速列车制动盘泵风效应分析

左建勇 罗卓军

左建勇, 罗卓军. 高速列车制动盘泵风效应分析[J]. 交通运输工程学报, 2014, 14(2): 34-40.
引用本文: 左建勇, 罗卓军. 高速列车制动盘泵风效应分析[J]. 交通运输工程学报, 2014, 14(2): 34-40.
ZUO Jian-yong, LUO Zhuo-jun. Air-pumping effect analysis for brake disc of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2014, 14(2): 34-40.
Citation: ZUO Jian-yong, LUO Zhuo-jun. Air-pumping effect analysis for brake disc of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2014, 14(2): 34-40.

高速列车制动盘泵风效应分析

基金项目: 

国家自然科学基金项目 61004077

详细信息
    作者简介:

    左建勇(1976-), 男, 山西运城人, 同济大学副教授, 工学博士, 从事列车制动与安全研究

  • 中图分类号: U270.1

Air-pumping effect analysis for brake disc of high-speed train

More Information
    Author Bio:

    ZUO Jian-yong (1976-), male, associate professor, PhD, +86-21-69584712, zuojy@tongji.edu.cn

  • 摘要: 为研究列车运行过程中制动盘泵风特性, 建立了列车、轨道、制动盘及其附近空气流场的有限元模型, 采用动网格流固耦合仿真方法, 计算了制动盘泵风功耗, 分析了制动盘泵风对牵引功率的影响。以运行速度为300km·h-1的4动4拖8辆编组列车为例, 进行了制动盘泵风效应的仿真与对比分析。分析结果表明: 制动盘泵风功耗与列车运行速度成正比, 每辆车泵风功耗为5470kW, 泵风阻力矩与制动盘安装位置无关, 主要受制动盘转动速度影响; 随列车运行速度的提高, 制动盘泵风功耗占比略有下降, 当列车运行速度由200km·h-1提高为400km·h-1时, 制动盘泵风功耗占比由12%降低为8%;封堵制动盘进风口可以降低泵风功耗的影响, 当列车运行速度为300km·h-1时, 封堵制动盘进风口后, 列车制动盘泵风功耗由原来的489 kW降低为68kW, 泵风功耗占基本阻力功耗的比例由原来的9.0%降低为1.3%, 改善效果显著。可见, 从泵风功耗角度探索优化高速列车制动盘散热筋结构具有较大的现实意义。

     

  • 图  1  仿真模型

    Figure  1.  Simulation model

    图  2  简化仿真模型

    Figure  2.  Simplified simulation model

    图  3  计算域三维模型与网格划分

    Figure  3.  Three-dimensional model and meshing of computational domain

    图  4  有限元模型与边界条件

    Figure  4.  Finite element model and boundary conditions

    图  5  轴盘泵风效应

    Figure  5.  Air-pumping effect of shaft disc

    图  6  制动盘泵风功耗

    Figure  6.  Air-pumping power consumptions of brake discs

    图  7  泵风功耗与基本阻力功耗对比

    Figure  7.  Comparison of air-pumping power consumption and basic resistance power consumption

    图  8  不同制动盘泵风功耗对比

    Figure  8.  Comparison of air-pumping power consumptions of different bake discs

    图  9  制动盘泵风优化方案与仿真结果

    Figure  9.  Air-pumping optimization scheme and simulation results of brake discs

    图  10  泵风功耗与基本阻力功耗对比

    Figure  10.  Comparison of air-pumping power consumptions and basic resistance power consumptions

    表  1  泵风阻力矩

    Table  1.   Air-pumping torques

    下载: 导出CSV

    表  2  泵风阻力矩对比

    Table  2.   Comparison of air-pumping torques

    下载: 导出CSV
  • [1] RAGHUNATHAN R S, KIM H D, SETOGUCHI T. Aerodynamics of high-speed railway train[J]. Progress in Aerospace Sciences, 2002 (38): 469-514.
    [2] KHIER W, BREUER M, DURST F. Flow structure around trains under side wind condition: a numerical study[J]. Computers and Fluids, 2000, 29 (2): 179-195. doi: 10.1016/S0045-7930(99)00008-0
    [3] 陈南翼, 张健. 高速列车空气阻力试验研究[J]. 铁道学报, 1998, 20 (5): 40-46. doi: 10.3321/j.issn:1001-8360.1998.05.007

    CHEN Nan-yi, ZHANG Jian. Experimental investigation of aerodynamic drag of high speed train[J]. Journal of the China Railway Society, 1998, 20 (5): 40-46. (in Chinese). doi: 10.3321/j.issn:1001-8360.1998.05.007
    [4] 苗秀娟, 田红旗, 高广军. 峡谷风对桥梁上列车气动性能的影响[J]. 中国铁道科学, 2010, 31 (6): 63-67. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201006012.htm

    MIAO Xiu-juan, TIAN Hong-qi, GAO Guang-jun. The influence of the gorge wind on the aerodynamic performance of the train on bridge[J]. China Railway Science, 2010, 31 (6): 63-67. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201006012.htm
    [5] 姚拴宝, 郭迪龙, 杨国伟, 等. 高速列车气动阻力分布特性研究[J]. 铁道学报, 2012, 34 (7): 18-23. doi: 10.3969/j.issn.1001-8360.2012.07.003

    YAO Shuan-bao, GUO Di-long, YANG Guo-wei, et al. Distribution of high-speed train aerodynamic drag[J]. Journal of the China Railway Society, 2012, 34 (7): 18-23. (in Chinese). doi: 10.3969/j.issn.1001-8360.2012.07.003
    [6] 郑循皓, 张继业, 张卫华. 高速列车转向架空气阻力的数值模拟[J]. 交通运输工程学报, 2011, 11 (2): 45-51. doi: 10.3969/j.issn.1671-1637.2011.02.008

    ZHENG Xun-hao, ZHANG Ji-ye, ZHANG Wei-hua. Numerical simulation of aerodynamic drag for high-speed train bogie[J]. Journal of Traffic and Transportation Engineering, 2011, 11 (2): 45-51. (in Chinese). doi: 10.3969/j.issn.1671-1637.2011.02.008
    [7] 祝华. SAB Wabco公司开发出新型制动盘[J]. 国外铁道车辆, 2005, 42 (3): 42. https://www.cnki.com.cn/Article/CJFDTOTAL-GWTD20050300F.htm

    ZHU Hua. New braking disc designed by SAB Wabco[J]. Foreign Rolling Stock, 2005, 42 (3): 42. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GWTD20050300F.htm
    [8] 左建勇, 吴萌岭, 罗卓军. 考虑车下环境的高速动车组空气流场数值仿真[J]. 同济大学学报: 自然科学版, 2013, 41 (11): 1717-1720, 1750. doi: 10.3969/j.issn.0253-374x.2013.11.018

    ZUO Jian-yong, WU Meng-ling, LUO Zhuo-jun. Simulation on air flow field of high-speed train concerning the environment under train[J]. Journal of Tongji University: Natural Science, 2013, 41 (11): 1717-1720, 1750. (in Chinese). doi: 10.3969/j.issn.0253-374x.2013.11.018
    [9] PALMER E, MISHRA R, FIELDHOUSE J. An optimization study of a multiple-row pin-vented brake disc to promote brake cooling using computational fluid dynamics[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2009 (223): 865-875.
    [10] YILDIZ Y, DUZGUN M. Stress analysis of ventilated brake discs using the finite element method[J]. International Journal of Automotive Technology, 2010, 11 (1): 133-138.
    [11] SIROUX M, HARMAND S, DESMET B. Experimental study using infrared thermograhy on the convective heat transfer of a TGV brake disc in the actual environment[J]. Optical Engineering, 2002, 41 (7): 1558-1564.
    [12] CHUNG W S, JUNG S P, PARK T W. Numerical analysis method to estimate thermal deformation of a ventilated disc for automotives[J]. Journal of Mechanical Science and Technology, 2010, 24 (11): 2189-2195.
    [13] HWANG P, WU X. Investigation of temperature and thermal stress in ventilated disc brake based on 3D thermo-mechanical coupling model[J]. Journal of Mechanical Science and Technology, 2010, 24 (1): 81-84.
    [14] PEVEC M, POTRC I, BOMBEK G, et al. Prediction of the cooling factors of a vehicle brake disc and its influence on the results of a thermal numerical simulation[J]. International Journal of Automotive Technology, 2012, 13 (5): 725-733.
    [15] CALINDO-LOPEZ C H, TIROVIC M. Maximising heat dissipation from ventilated wheel-hub-mounted railway brake discs[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2013, 227 (3): 269-285.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  738
  • HTML全文浏览量:  172
  • PDF下载量:  637
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-29
  • 刊出日期:  2014-04-25

目录

    /

    返回文章
    返回