留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

受电弓主动控制综述

鲁小兵 刘志刚 宋洋 韩志伟

鲁小兵, 刘志刚, 宋洋, 韩志伟. 受电弓主动控制综述[J]. 交通运输工程学报, 2014, 14(2): 49-61.
引用本文: 鲁小兵, 刘志刚, 宋洋, 韩志伟. 受电弓主动控制综述[J]. 交通运输工程学报, 2014, 14(2): 49-61.
LU Xiao-bing, LIU Zhi-gang, SONG Yang, HAN Zhi-wei. Review of pantograph active control[J]. Journal of Traffic and Transportation Engineering, 2014, 14(2): 49-61.
Citation: LU Xiao-bing, LIU Zhi-gang, SONG Yang, HAN Zhi-wei. Review of pantograph active control[J]. Journal of Traffic and Transportation Engineering, 2014, 14(2): 49-61.

受电弓主动控制综述

基金项目: 

国家自然科学基金项目 U1134205

国家自然科学基金项目 51377136

详细信息
    作者简介:

    鲁小兵(1988-), 男, 甘肃平凉人, 西南交通大学工学博士研究生, 从事受电弓主动控制研究

    刘志刚(1975-), 男, 河南巩义人, 西南交通大学教授, 工学博士

  • 中图分类号: U264.34

Review of pantograph active control

More Information
  • 摘要: 为了抑制弓网耦合振动, 提高高速列车集流能力, 综述了受电弓主动控制研究过程中弓网系统建模、控制目标与测量系统、控制算法、操动机构及其安装、试验验证等5个关键环节的研究进展, 分析了弓网模型对接触力仿真结果精度和计算时间的影响、不同控制算法的优缺点和操动机构的选择方法, 展望了受电弓主动控制在模型优化、算法设计和信号修正等方面的未来研究重点。分析结果表明: 在受电弓主动控制研究中, 弓网模型的建立要同时考虑对系统关键因素的表征与计算效率, 控制目标的选取以能反映受流质量为准则, 量测系统需尽量减少机车扰动对量测结果可靠性的影响, 控制结构不能影响原有升弓机构的工作, 这些与控制算法的实时性与执行机构的高效性一起共同决定了受电弓主动控制的实用效能。

     

  • 图  1  受电弓主动控制研究流程

    Figure  1.  Study flow chart of active control of pantograph

    图  2  质量块模型

    Figure  2.  Lumped mass models

    图  3  多体模型

    Figure  3.  Multibody model

    图  4  接触网结构

    Figure  4.  Catenary structure

    图  5  操动机构

    Figure  5.  Actuator

    图  6  电磁操动机构

    Figure  6.  Electromagnetic actuator

    图  7  线性操动机构

    Figure  7.  Wire actuator

    图  8  安装结构

    Figure  8.  Installation structures

    图  9  仿真原理

    Figure  9.  Simulation principle

    图  10  仿真结构

    Figure  10.  Simulation structure

  • [1] MASSAT J P, LAINE J P, BOBILLOT A. Pantograph-catenary dynamics simulation[J]. Vehicle System Dynamics, 2006, 44 (Sup1): 551-559. doi: 10.1080/00423110600875443
    [2] BALESTRINO A, BRUNO O, LANDI A, et al. Innovative solutions for overhead catenary-pantograph system: wire actuated control and observed contact force[J]. Vehicle System Dynamics, 2000, 33 (2): 69-89. doi: 10.1076/0042-3114(200002)33:2;1-1;FT069
    [3] 冒一平. 德国铁路主动控制受电弓试验成功[J]. 中国铁路, 2004 (5): 31. doi: 10.3969/j.issn.1001-683X.2004.05.020

    MAO Yi-ping. The active control pantograph is tested successfully in German railway[J]. China Railway, 2004 (5): 31. (in Chinese). doi: 10.3969/j.issn.1001-683X.2004.05.020
    [4] 吴燕. 高速受电弓-接触网动态性能及主动控制策略的研究[D]. 北京: 北京交通大学, 2011.

    WU Yan. Research on dynamic performance and active control strategy of high-speed pantograph-catenary system[D]. Beijing: Beijing Jiaotong University, 2011. (in Chinese).
    [5] 吴学杰, 张卫华, 梅桂明, 等. 接触网-受电弓振动主动控制问题的研究[J]. 振动工程学报, 2002, 15 (1): 36-40. doi: 10.3969/j.issn.1004-4523.2002.01.007

    WU Xue-jie, ZHANG Wei-hua, MEI Gui-ming, et al. Research of active vibration control for the pantograph-catenary system[J]. Journal of Vibration Engineering, 2002, 15 (1): 36-40. (in Chinese). doi: 10.3969/j.issn.1004-4523.2002.01.007
    [6] 郭京波, 杨绍普, 高国生. 高速机车主动控制受电弓研究[J]. 铁道学报, 2004, 26 (4): 41-45. doi: 10.3321/j.issn:1001-8360.2004.04.009

    GUO Jing-bo, YANG Shao-pu, GAO Guo-sheng. Study on active control of high-speed-train pantographs[J]. Journal of the China Railway Society, 2004, 26 (4): 41-45. (in Chinese). doi: 10.3321/j.issn:1001-8360.2004.04.009
    [7] 郭京波, 杨绍普, 高国生. 变刚度弓网系统主动控制研究[J]. 振动与冲击, 2005, 24 (2): 9-11, 15. doi: 10.3969/j.issn.1000-3835.2005.02.003

    GUO Jing-bo, YANG Shao-pu, GAO Guo-sheng. Research on active control of the pantograph-catenary system with varying stiffness[J]. Journal of Vibration and Shock, 2005, 24 (2): 9-11, 15. (in Chinese). doi: 10.3969/j.issn.1000-3835.2005.02.003
    [8] 刘红娇, 张卫华, 梅桂明. 基于状态空间法的受电弓主动控制的研究[J]. 中国铁道科学, 2006, 27 (3): 79-83. doi: 10.3321/j.issn:1001-4632.2006.03.014

    LIU Hong-jiao, ZHANG Wei-hua, MEI Gui-ming. Study on pantograph active control based on state space method[J]. China Railway Science, 2006, 27 (3): 79-83. (in Chinese). doi: 10.3321/j.issn:1001-4632.2006.03.014
    [9] 杨岗, 李芾. 基于LQR的高速受电弓最优半主动控制研究[J]. 铁道学报, 2011, 33 (11): 34-40. doi: 10.3969/j.issn.1001-8360.2011.11.006

    YANG Gang, LI Fu. Semi-active control for high-speed pantograph based on optimal LQR regulator[J]. Journal of the China Railway Society, 2011, 33 (11): 34-40. (in Chinese). doi: 10.3969/j.issn.1001-8360.2011.11.006
    [10] 张晓东. 高速列车受电弓自适应主动控制[D]. 北京: 北京交通大学, 2011.

    ZHANG Xiao-dong. Self-adaptive control of high-speed pantograph[D]. Beijing: Beijing Jiaotong University, 2011. (in Chinese).
    [11] KIA S H, BARTOLINI F, MPANDA-MABWE A, et al. Pantograph-catenary interaction model comparison[C]//IEEE. IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society. Glendale: IEEE, 2010: 1584-1589.
    [12] POMBO J, AMBROSIO J. Environmental and track perturbations on multiple pantograph interaction with catenaries in high-speed trains[J]. Computers and Structures, 2013, 124: 88-101. doi: 10.1016/j.compstruc.2013.01.015
    [13] AMBRóSIO J, POMBO J, PEREIRA M. Optimization of highspeed railway pantographs for improving pantograph-catenary contact[J]. Theoretical and Applied Mechanics Letters, 2013, 3 (1): 1-7.
    [14] 梅桂明. 受电弓-接触网系统动力学研究[D]. 成都: 西南交通大学, 2001.

    MEI Gui-ming. The dynamics study of pantograph/catenary system[D]. Chengdu: Southwest Jiaotong University, 2001. (in Chinese).
    [15] 周宁, 张卫华. 基于受电弓弹性体模型的弓网动力学分析[J]. 铁道学报, 2009, 31 (6): 26-32. doi: 10.3969/j.issn.1001-8360.2009.06.005

    ZHOU Ning, ZHANG Wei-hua. Analysis of dynamic pantograph-catenary interaction based on elastic pantograph model[J]. Journal of the China Railway Society, 2009, 31 (6): 26-32. (in Chinese). doi: 10.3969/j.issn.1001-8360.2009.06.005
    [16] FARHANGDOUST S, FARAHBAKHSH M, SHAHRAVI M. Modeling of pantograph-catenary dynamic stability[J]. Technical Journal of Engineering and Applied Sciences, 2013, 3 (14): 1486-1491.
    [17] LEVANT A, PISANO A, USAI E. Output-feedback control of the contact-force in high-speed-train pantographs[C]//IEEE. Proceedings of the 40th IEEE Conference on Decision and Control. Orlando: IEEE, 2001: 1831-1836.
    [18] ANTUNES P C. Development of multibody pantograph and finite element catenary models for application to high-speed railway operations[D]. Lisboa: Technical University of Lisboa, 2012.
    [19] HARELL P, DRUGGE L, REIJM M. Study of critical sections in catenary systems during multiple pantograph operation[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2005, 219 (4): 203-211. doi: 10.1243/095440905X8934
    [20] KIA S H, BARTOLINI F, MPANDA-MABWE A, et al. Real-time simulation of pantograph-catenary interaction[C]//IEEE. IECON 2011-37th Annual Conference on IEEE Industrial Electronics Society. Melbourne: IEEE, 2011: 258-264.
    [21] 周宁, 李瑞平, 张卫华. 基于负弛度法的接触网建模与仿真[J]. 交通运输工程学报, 2009, 9 (4): 28-32. doi: 10.3321/j.issn:1671-1637.2009.04.006

    ZHOU Ning, LI Rui-ping, ZHANG Wei-hua. Modeling and simulation of catenary based on negative sag method[J]. Journal of Traffic and Transportation Engineering, 2009, 9 (4): 28-32. (in Chinese). doi: 10.3321/j.issn:1671-1637.2009.04.006
    [22] WALTERS S, RACHID A, MPANDA A. On modeling and control of pantograph catenary systems[C]//IEEE. 2011 International Conference on Pantograph Catenary Interaction Framework for Intelligent Control. Amiens: IEEE, 2011: 1-10.
    [23] TIERI R. Innovative active control strategies for pantograph catenary interaction[D]. Stockholm: Royal Institute of Technology, 2012.
    [24] BRUNO O, LANDI A, PAPI M, et al. Phototube sensor for monitoring the quality of current collection on overhead electrified railways[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2001, 215 (3): 231-241. doi: 10.1243/0954409011531549
    [25] ALLOTTA B, PUGI L, BARTOLINI F. An active suspension system for railway pantographs: the T2006 prototype[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2009, 223 (1): 15-29. doi: 10.1243/09544097JRRT174
    [26] COLLINA A, FACCHINETTI A, FOSSATI F, et al. An application of active control to the collector of an high-speed pantograph: simulation and laboratory tests[C]//IEEE. Proceedings of the 44th IEEE Conference on Decision and Control. Seville: IEEE, 2005: 4602-4609.
    [27] ALLOTTA B, PAPI M, PUGI L, et al. Experimental campaign on a servo-actuated pantograph[C]//IEEE. 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Como: IEEE, 2001: 237-242.
    [28] COLLINA A, FOSSATI F, PAPI M, et al. Impact of overhead line irregularity on current collection and diagnostics based on the measurement of pantograph dynamics[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2007, 221 (4): 547-559. doi: 10.1243/09544097F02105
    [29] DIANA G, FOSSATI F, RESTA F. High speed railway: collecting pantographs active control and overhead lines diagnostic solutions[J]. Vehicle System Dynamics, 1998, 30 (1): 69-84. doi: 10.1080/00423119808969436
    [30] PISANO A, USAI E. Contact force estimation and regulation in active pantographs: an algebraic observability approach[C]//IEEE. Proceedings of the 46th IEEE Conference on Decision and Control. New Orleans: IEEE, 2007: 4341-4346.
    [31] BALESTRINO A, BRUNO O, LANDI A, et al. Active controls and non-invasive monitoring for high speed trains[C]//ZITEK P. Proceedings of 16th IFAC World Congress. Prague: IFAC, 2005: 4-8.
    [32] PISANO A, USAI E. Contact force regulation in wire-actuated pantographs via variable structure control[C]//IEEE. Proceedings of the 46th IEEE Conference on Decision and Control. New Orleans: IEEE, 2007: 1986-1992.
    [33] ALLOTTA B, PISANO A, PUGI L, et al. VSC of a servoactuated ATR90-type pantograph[C]//IEEE. Proceedings of the 44th IEEE Conference on Decision and Control. Seville: IEEE, 2005: 590-595.
    [34] LIN Y C, LIN C L, YANG C C. Robust active vibration control for rail vehicle pantograph[J]. IEEE Transactions on Vehicular Technology, 2007, 56 (4): 1994-2004. doi: 10.1109/TVT.2007.897246
    [35] WANG Shu-dong, GUO Jing-bo, GAO Guo-sheng. Research of the active control for high-speed train pantograph[C]//IEEE. 2008 IEEE Conference on Cybernetics and Intelligent Systems. Chengdu: IEEE, 2008: 749-753.
    [36] WALTERS S. Simulation of fuzzy control applied to a railway pantograph-catenary system[C]//SETCHI R, JORDANOV I, HOWLETTT R S, et al. KES 10 Proceedings of the 14th International Conference on Knowledge-Based and Intelligent Information and Engineering Systems. Cardiff: Springer, 2010: 322-330.
    [37] NAMERIKAWA T, GOTO S Y, MATSUMURA F. Robust force control of a pantograph system by considering model parameter perturbation[C]//IEEE. IEEE/ASME International Conference on Advanced Intelligent Mechatronics'97. Tokyo: IEEE, 1997: 45.
    [38] CORRIGA G, GIUA A, MATTA W, et al. Frequency-shaping design of a gain-scheduling controller for pantographs[C]//IEEE. Proceedings of the 33rd IEEE Conference on Decision and Control. Lake Buena Vista: IEEE, 1994: 393-398.
    [39] YAMASHITA Y, IKEDA M. Advanced active control of contact force between pantograph and catenary for high-speed trains[J]. Quarterly Report of RTRI, 2012, 53 (1): 28-33. doi: 10.2219/rtriqr.53.28
    [40] ZHANG Xiao-dong, FAN Yu. Active self-adaptive control of high-speed train pantograph[C]//IEEE. 2011 IEEE Power Engineering and Automation Conference (PEAM). Wuhan: IEEE, 2011: 152-156.
    [41] RESTA F, COLLINA A, FOSSATI F. Actively controlled pantograph: an application[C]//IEEE. 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Como: IEEE, 2001: 243-248.
    [42] COLLINA A, FACCHINETTI A, RESTA F. A feasibility study of an aerodynamic control for a high speed pantograph[C]//IEEE. 2007 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Zurich: IEEE, 2007: 1-6.
    [43] FACCHINETTI A, MAURI M. Hardware in the loop test-rig for pantograph active control evaluation[C]//IEEE. 2008 IEEE International Symposium on Industrial Electronics. Cambridge: IEEE, 2008: 2171-2176.
    [44] PISANO A, USAI E. Contact force regulation in wire-actuated pantographs via variable structure control and frequencydomain techniques[J]. International Journal of Control, 2008, 81 (11): 1747-1762. doi: 10.1080/00207170701874473
    [45] ZHANG W, MEI G, WU X, et al. Hybrid simulation of dynamics for the pantograph-catenary system[J]. Vehicle System Dynamics, 2002, 38 (6): 393-414.
    [46] WU Y, ZHENG J H, ZHENG T Q. Optimizing active control scheme of high-speed pantograph[C]//IEEE. IEEE 6th International Power Electronics and Motion Control Conference. Wuhan: IEEE, 2009: 2622-2626.
    [47] ALLOTTA B, PUGI L, BARTOLINI F. Design and experimental results of an active suspension system for a high-speed pantograph[J]. IEEE/ASME Transactions on Mechatronics, 2008, 13 (5): 548-557. doi: 10.1109/TMECH.2008.2002145
    [48] COLLINA A, FACCHINETTI A, FOSSATI F, et al. Hardware in the loop test-rig for identification and control application on high speed pantographs[J]. Shock and Vibration, 2004, 11 (3/4): 445-456.
    [49] FACCHINETTI A, MAURI M. Hardware-in-the-loop overhead line emulator for active pantograph testing[J]. IEEE Transactions on Industrial Electronics, 2009, 56 (10): 4071-4078.
    [50] AMBROSIO J, POMBO J, PEREIRA M, et al. A computational procedure for the dynamic analysis of the catenary-pantograph interaction in high-speed trains[J]. Journal of Theoretical and Applied Mechanics, 2012, 50 (3): 681-699.
    [51] 王慧. HHT方法及其若干应用研究[D]. 合肥: 合肥工业大学, 2009.

    WANG Hui. Research on the HHT method and its applications[D]. Hefei: Hefei University of Technology, 2009. (in Chinese).
    [52] LANDI A, MENCONI L, SANI L. Hough transform and thermo-vision for monitoring pantograph-catenary system[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2005, 220 (4): 435-448.
    [53] STELA R A, CRISTINA M, MARCEL T. Chaos theory based control of contact force in electric railway transportation system[C]//IEEE. 2012 11th International Conference on Environment and Electrical Engineering. Venice: IEEE, 2012: 995-999.
    [54] SUN Wei-chao, GAO Hui-jun, KAYNAK O. Adaptive backstepping control for active suspension systems with hard constraints[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18 (3): 1071-1079.
  • 加载中
图(10)
计量
  • 文章访问数:  833
  • HTML全文浏览量:  216
  • PDF下载量:  798
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-21
  • 刊出日期:  2014-04-25

目录

    /

    返回文章
    返回