留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

桥梁风致振动的混沌特性

李加武 王新 张悦 高蒙 陈子涛

李加武, 王新, 张悦, 高蒙, 陈子涛. 桥梁风致振动的混沌特性[J]. 交通运输工程学报, 2014, 14(3): 34-42.
引用本文: 李加武, 王新, 张悦, 高蒙, 陈子涛. 桥梁风致振动的混沌特性[J]. 交通运输工程学报, 2014, 14(3): 34-42.
LI Jia-wu, WANG Xin, ZHANG Yue, GAO Meng, CHEN Zi-tao. Chaos characteristics of wind-induced vibrations for bridge[J]. Journal of Traffic and Transportation Engineering, 2014, 14(3): 34-42.
Citation: LI Jia-wu, WANG Xin, ZHANG Yue, GAO Meng, CHEN Zi-tao. Chaos characteristics of wind-induced vibrations for bridge[J]. Journal of Traffic and Transportation Engineering, 2014, 14(3): 34-42.

桥梁风致振动的混沌特性

基金项目: 

国家自然科学基金项目 51078038

土木工程防灾国家重点实验室开放基金项目 SLDRCE10-MB-02

中央高校基本科研业务费专项资金项目 CHD2010ZD001

详细信息
    作者简介:

    李加武(1972-), 男, 安徽舒城人, 长安大学教授, 工学博士, 从事桥梁抗风研究

  • 中图分类号: U441

Chaos characteristics of wind-induced vibrations for bridge

More Information
    Author Bio:

    LI Jia-wu (1972-), male, professor, PhD, +86-29-82336252, ljw@gl.chd.edu.cn

  • 摘要: 利用非线性理论和混沌时间序列分析方法, 建立了桥梁风致振动的数学模型, 开发了计算桥梁振动加速度时间序列Lyapunov指数的MATLAB程序, 进行了桥梁涡振和颤振的风洞试验, 分析了不同风攻角下的桥梁风致振动的阻尼比、Lyapunov指数与风速的关系以及涡振振幅与风速的关系, 研究了桥梁颤振和涡振的混沌特性。试验结果表明: 在颤振试验中, 当风速小于颤振临界风速15.5m·s-1时, Lyapunov指数小于0, Lyapunov指数与阻尼比存在很大的相关性, 当风速从3m·s-1增大为18m·s-1时, 相空间逐渐发散; 在涡振试验中, 当风速从4.5m·s-1增大至8.5m·s-1时, Lyapunov指数大于0, 桥梁发生明显涡振, 并由多频振动逐渐转变为单频振动, 相空间变为一个较为理想的圆。桥梁的涡振与颤振均属于混沌现象, 低风速下的Lyapunov指数可用来预测高风速下的风致振动, 并且利用相空间也能识别涡振与颤振。

     

  • 图  1  颤振试验中阻尼比与风速的关系

    Figure  1.  Relationships between damp ratios and wind speeds in flutter test

    图  2  涡振试验中振幅与风速的关系

    Figure  2.  Relationships between vortex vibration amplitudes and wind speeds in vortex vibration test

    图  3  计算程序

    Figure  3.  Calculation program

    图  4  颤振试验中5°风攻角的Lyapunov指数

    Figure  4.  Lyapunov exponents at wind attack angle of 5° in flutter test

    图  5  颤振试验中5°风攻角的阻尼比

    Figure  5.  Damping ratios at wind attack angle of 5° in flutter test

    图  6  颤振试验中3°风攻角的Lyapunov指数

    Figure  6.  Lyapunov exponents at wind attack angle of 3° in flutter test

    图  7  颤振试验中3°风攻角的阻尼比

    Figure  7.  Damping ratios at wind attack angle of 3° in flutter test

    图  8  颤振试验中0°风攻角的Lyapunov指数

    Figure  8.  Lyapunov exponents at wind attack angle of 0° in flutter test

    图  9  颤振试验中0°风攻角的阻尼比

    Figure  9.  Damping ratios at wind attack angle of 0° in flutter test

    图  10  颤振试验中-3°风攻角的Lyapunov指数

    Figure  10.  Lyapunov exponents at wind attack angle of -3° in flutter test

    图  11  颤振试验中-3°风攻角的阻尼比

    Figure  11.  Damping ratios at wind attack angle of -3° in flutter test

    图  12  颤振试验中-5°风攻角的Lyapunov指数

    Figure  12.  Lyapunov exponents at wind attack angle of -5° in flutter test

    图  13  颤振试验中-5°风攻角的阻尼比

    Figure  13.  Damping ratios at wind attack angle of -5° in flutter test

    图  14  颤振试验中风速为3m·s-1时的加速度时程曲线

    Figure  14.  Acceleration time-history curve at wind speed of 3 m·s-1 in flutter test

    图  15  颤振试验中风速为3m·s-1时的相空间

    Figure  15.  Phase space at wind speed of 3 m·s-1 in flutter test

    图  16  颤振试验中风速为18m·s-1时的加速度时程曲线

    Figure  16.  Acceleration time-history curve at wind speed of 18 m·s-1 in flutter test

    图  17  颤振试验中风速为18m·s-1的相空间

    Figure  17.  Phase space at wind speed of 18 m·s-1 in flutter test

    图  18  涡振试验中5°风攻角的Lyapunov指数

    Figure  18.  Lyapunov exponents at wind attack angle of 5° in vortex vibration test

    图  19  涡振试验中5°风攻角的振幅

    Figure  19.  Amplitudes at wind attack angle of 5° in vortex vibration test

    图  20  涡振试验中3°风攻角的Lyapunov指数

    Figure  20.  Lyapunov exponents at wind attack angle of 3° in vortex vibration test

    图  21  涡振试验中3°风攻角的振幅

    Figure  21.  Amplitudes at wind attack angle of 3° in vortex vibration test

    图  22  涡振试验中0°风攻角的Lyapunov指数

    Figure  22.  Lyapunov exponents at wind attack angle of 0° in vortex vibration test

    图  23  涡振试验中0°风攻角的振幅

    Figure  23.  Amplitudes at wind attack angle of 0° in vortex vibration test

    图  24  涡振试验中-3°风攻角的Lyapunov指数

    Figure  24.  Lyapunov exponents at wind attack angle of -3° in vortex vibration test

    图  25  涡振试验中-3°风攻角的振幅

    Figure  25.  Amplitudes at wind attack angle of -3° in vortex vibration test

    图  26  涡振试验中-5°风攻角的Lyapunov指数

    Figure  26.  Lyapunov exponents at wind attack angle of -5° in vortex vibration test

    图  27  涡振试验中-5°风攻角的振幅

    Figure  27.  Amplitudes at wind attack angle of -5° in vortex vibration test

    图  28  涡振试验中风速为4.5 m·s-1时的加速度时程曲线

    Figure  28.  Acceleration time-history curve at wind speed of 4.5 m·s-1 in vortex vibration test

    图  29  涡振试验中风速为4.5m·s-1的相空间

    Figure  29.  Phase space at wind speed of 4.5 m·s-1 in vortex vibration test

    图  30  涡振试验中风速为8.5m·s-1时的加速度时程曲线

    Figure  30.  Acceleration time-history curve at wind speed of 8.5 m·s-1 in vortex vibration test

    图  31  涡振试验中风速为8.5m·s-1的相空间

    Figure  31.  Phase space at wind speed of 8.5 m·s-1 in vortex vibration test

  • [1] 项海帆. 进入21世纪的桥梁风工程研究[J]. 同济大学学报: 自然科学版, 2002, 30 (5): 529-532. doi: 10.3321/j.issn:0253-374X.2002.05.001

    XIANG Hai-fan. Study on bridge wind engineering into 21st century[J]. Journal of Tongji University: Natural Science, 2002, 30 (5): 529-532. (in Chinese). doi: 10.3321/j.issn:0253-374X.2002.05.001
    [2] OMENZETTER P. Sensitivity analysis of the eigenvalue problem for general dynamic systems with application to bridge deck flutter[J]. Journal of Engineering Mechanics, 2012, 138 (6): 675-682. doi: 10.1061/(ASCE)EM.1943-7889.0000377
    [3] NIETO F. An analytical approach to sensitivity analysis of the flutter speed in bridges considering variable deck mass[J]. Advances in Engineering Software, 2011, 42 (4): 117-129. doi: 10.1016/j.advengsoft.2010.12.003
    [4] ARGENTINI T, PAGANI A, ROCCHI D, et al. Monte Carlo analysis of total damping and flutter speed of a long span bridge: effects of structural and aerodynamic uncertainties[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 128 (2): 90-104.
    [5] BRUSIANI F. On the evaluation of bridge deck flutter derivatives using RANS turbulence models[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 119 (1): 39-47.
    [6] 郭增伟, 葛耀君, 杨詠昕. 基于状态空间的桥梁颤振分析[J]. 华中科技大学学报: 自然科学版, 2012, 40 (11): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201211005.htm

    GUO Zeng-wei, GE Yao-jun, YANG Yong-xin. Flutter analysis of bridge based on state-space approach[J]. Journal of Huazhong University of Science and Technology: Nature Science Edition, 2012, 40 (11): 27-32. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201211005.htm
    [7] 辛大波, 欧进萍, 李惠, 等. 基于定常吸气方式的大跨桥梁风致颤振抑制方法[J]. 吉林大学学报: 工学版, 2011, 41 (5): 1273-1278. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201105016.htm

    XIN Da-bo, OU Jin-ping, LI Hui, et al. Suppression method for wind-induced flutter of long-span bridge based on steady air-suction[J]. Journal of Jilin University: Engineering and Technology Edition, 2011, 41 (5): 1273-1278. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201105016.htm
    [8] CASALOTTI A, ARENA A, LACARBONARA W. Mitigation of post-flutter oscillations in suspension bridges by hysteretic tuned mass dampers[J]. Engineering Structures, 2014, 69 (2): 62-71.
    [9] 许福友, 林志兴, 李永宁, 等. 气动措施抑制桥梁涡振机理研究[J]. 振动与冲击, 2010, 29 (1): 73-76. doi: 10.3969/j.issn.1000-3835.2010.01.016

    XU Fu-you, LIN Zhi-xing, LI Yong-ning, et al. Research on vortex resonance depression mechanism of bridge deck with aerodynamic measures[J]. Journal of Vibration and Shock, 2010, 29 (1): 73-76. (in Chinese). doi: 10.3969/j.issn.1000-3835.2010.01.016
    [10] PATIL A. Mitigation of vortex-induced vibrations in bridges under conflicting objectives[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99 (12): 1243-1252. doi: 10.1016/j.jweia.2011.10.001
    [11] 李清都, 杨晓松. 基于拓扑马蹄的混沌动力学研究进展[J]. 动力学与控制学报, 2012, 10 (4): 293-298. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXK201204005.htm

    LI Qing-du, YANG Xiao-song. Progresses on chaotic dynamics study with topological horseshoes[J]. Journal of Dynamics and Control, 2012, 10 (4): 293-298. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLXK201204005.htm
    [12] 何四祥. 混沌在结构工程中的应用研究[D]. 上海: 同济大学, 2007.

    HE Si-xiang. Chaos in the application of structural engineering research[D]. Shanghai: Tongji University, 2007. (in Chinese).
    [13] HU Gao-ge, GAO She-sheng, GAO Bing-bing. Chaos control in Cournot-Puu model[J]. Applied Mechanics and Materials, 2014, 494 (1): 1189-1194.
    [14] POIREL D, PRICE S J. Random binary (coalescence) flutter of a two-dimensional linear airfoil[J]. Journal of Fluids and Structures, 2003, 18 (1): 23-42. doi: 10.1016/S0889-9746(03)00074-4
    [15] 余宏波. 斜拉桥拉索风雨激振混沌特性应用研究[D]. 西安: 长安大学, 2012.

    YU Hong-bo. Application research on chaotic characteristics of wind-rain induced vibration of cables for the cable-stayed bridges[D]. Xi'an: Chang'an University, 2012. (in Chinese).
    [16] CARACOGLIA L. An Euler-Monte Carlo algorithm assessing Moment Lyapunov Exponents for stochastic bridge flutter predictions[J]. Computers and Structures, 2013, 122 (1): 65-77.
    [17] 张文胜, 崔志伟. 铁路客运专线特大桥沉降预测模型[J]. 交通运输工程学报, 2011, 11 (6): 31-36. http://transport.chd.edu.cn/article/id/201106005

    ZHANG Wen-sheng, CUI Zhi-wei. Settlement prediction model of super large bridge for passenger dedicated railway[J]. Journal of Traffic and Transportation Engineering, 2011, 11 (6): 31-36. (in Chinese). http://transport.chd.edu.cn/article/id/201106005
    [18] 李国辉, 周世平, 徐得名. 时间序列最大Lyapunov指数的计算[J]. 应用科学学报, 2003, 21 (2): 127-131. doi: 10.3969/j.issn.0255-8297.2003.02.004

    LI Guo-hui, ZHOU Shi-ping, XU De-ming. Computing the largest Lyapunov exponent from time series[J]. Journal of Applied Sciences, 2003, 21 (2): 127-131. (in Chinese). doi: 10.3969/j.issn.0255-8297.2003.02.004
    [19] 郭增伟, 葛耀君. 桥梁自激力脉冲响应函数及颤振时域分析[J]. 中国公路学报, 2013, 26 (6): 103-109. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201306018.htm

    GUO Zeng-wei, GE Yao-jun. Impulse response functions of self-excited force and flutter analysis in time domain for bridge[J]. China Journal of Highway and Transport, 2013, 26 (6): 103-109. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201306018.htm
    [20] 管青海, 李加武, 刘建新. 典型箱梁断面双竖向涡振区的成因分析[J]. 长安大学学报: 自然科学版, 2013, 33 (4): 40-46. doi: 10.3969/j.issn.1671-8879.2013.04.008

    GUAN Qing-hai, LI Jia-wu, LIU Jian-xin. Investigation into formation of two lock-in districts of vertical vortex-induced vibration of a box bridge deck section[J]. Journal of Chang'an University: Natural Science Edition, 2013, 33 (4): 40-46. (in Chinese). doi: 10.3969/j.issn.1671-8879.2013.04.008
    [21] 许伦辉, 刘邦明. 城市交通信号控制与仿真[J]. 公路交通科技, 2013, 30 (9): 109-115. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201309017.htm

    XU Lun-hui, LIU Bang-ming. Urban traffic signal control and simulation[J]. Journal of Highway and Transportation Research and Development, 2013, 30 (9): 109-115. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201309017.htm
    [22] 胡庆安, 乔云强, 刘建新. MSS62.5移动模架造桥机风洞试验及抗风分析[J]. 筑路机械与施工机械化, 2006, 23 (10): 36-38. doi: 10.3969/j.issn.1000-033X.2006.10.017

    HU Qing-an, QIAO Yun-qiang, LIU Jian-xin. Wind tunnel test and anti-wind analysis for MSS62.5[J]. Road Machinery and Construction Mechanization, 2006, 23 (10): 36-38. (in Chinese). doi: 10.3969/j.issn.1000-033X.2006.10.017
    [23] LIU Xiao-gang, FAN Jian-sheng, NIE Jian-guo, et al. Behavior of composite rigid frame bridge under bi-directional seismic excitations[J]. Journal of Traffic and Transportation Engineering: English Edition, 2014, 1 (1): 62-71. doi: 10.1016/S2095-7564(15)30090-8
    [24] FU Mei-zhen, LIU Yong-jian, LI Na, et al. Application of modern timber structure in short and medium span bridges in China[J]. Journal of Traffic and Transportation Engineering: English Edition, 2014, 1 (1): 72-80. doi: 10.1016/S2095-7564(15)30091-X
  • 加载中
图(31)
计量
  • 文章访问数:  677
  • HTML全文浏览量:  165
  • PDF下载量:  728
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-17
  • 刊出日期:  2014-06-25

目录

    /

    返回文章
    返回