-
摘要: 基于轮轨刚性接触给出了轮轨准弹性接触的计算方法, 开发了TPLWRSim软件, 计算了高速动车组标准车轮踏面和磨耗车轮踏面轮轨接触关系, 并对TPLWRSim软件与SIMPACK软件的轮轨关系计算结果进行了对比分析。分析结果表明: 对于标准S1002CN踏面, 准弹性接触对接触点横坐标的修正量最大为5.26 mm, 磨耗后最大为11.10 mm; 对于标准LMA踏面, 修正量最大为3.82 mm, 磨耗后最大为13.14 mm。由TPLWRSim软件计算的准弹性轮轨接触关系与SIMPACK计算结果基本一致。轮轨准弹性接触能很好地改变刚性接触点跳变、不均匀、不连续的特征, 使其变得更光滑连续。计算结果可用于磨耗后踏面的跟踪测试, 具有很好的实用价值。Abstract: Base on wheel-rail rigid contact, a calculation method of quasi-elastic contact was presented.TPLWRSim software was developed based on the contact method to calculate the wheel-rail contact relationships of standard and worn tread of high-speed EMU respectively, and the calculation results were compared with the results of SIMPACK software.Analysis result indicates that the maximum modified value of quasi-elastic contact point abscissa for standard S1002CN tread is 5.26 mm, and the value is 11.10 mm for worn tread.For standard LMA tread, the maximum modified value is 3.82 mm, and the value is 13.14 mm for worn tread.Wheel-rail quasi-elastic contact relationships calculated by TPLWRSim and SIMPACK are basically identical.Wheel-rail quasi-elastic contact can better change the characteristic of rigid contact with sharp, discontinuity and large dispersion contact point, and makes the contact point more smooth and continuous.The calculation result can be used for the track test of worn tread, and will have very good practicality.
-
表 1 计算参数
Table 1. Calculation parameters
表 2 S1002CN踏面刚性和准弹性接触点比较
Table 2. Comparison between rigid and quasi-elastic contact points of S1002CN tread
表 3 LMA踏面刚性和准弹性接触点比较
Table 3. Comparison between rigid and quasi-elastic contact points of LMA tread
表 4 标准踏面刚性和准弹性轮轨接触特征
Table 4. Rigid and quasi-elastic wheel-rail contact characteristics of standard tread
表 5 磨耗后踏面刚性和准弹性轮轨接触特征
Table 5. Rigid and quasi-elastic wheel-rail contact characteristics of worn tread
-
[1] 金学松, 沈志云. 轮轨滚动接触疲劳问题研究的最新进展[J]. 铁道学报, 2001, 23 (2): 92-108. doi: 10.3321/j.issn:1001-8360.2001.02.019JIN Xue-song, SHEN Zhi-yun. Rolling contact fatigue of wheel/rail and its advanced research progress[J]. Journal of the China Railway Society, 2001, 23 (2): 92-108. (in Chinese). doi: 10.3321/j.issn:1001-8360.2001.02.019 [2] 金学松, 张雪珊, 张剑, 等. 轮轨关系研究中的力学问题[J]. 机械强度, 2005, 27 (4): 408-418. doi: 10.3321/j.issn:1001-9669.2005.04.002JIN Xue-song, ZHANG Xue-shan, ZHANG Jian, et al. Mechanics in performance of wheel-rail[J]. Journal of Mechanical Strength, 2005, 27 (4): 408-418. (in Chinese). doi: 10.3321/j.issn:1001-9669.2005.04.002 [3] ZAKHAROV S, GORYACHEVA I, BOGDANOV V, et al. Problems with wheel and rail profiles selection and optimization[J]. Wear, 2008, 265 (9/10): 1266-1272. [4] 李艳, 张卫华, 池茂儒, 等. 车轮踏面外形及轮径差对车辆动力学性能的影响[J]. 铁道学报, 2010, 32 (1): 104-108. doi: 10.3969/j.issn.1001-8360.2010.01.018LI Yan, ZHANG Wei-hua, CHI Mao-ru, et al. Influence of wheel tread profile and rolling diameter difference on dynamic performance of vehicles[J]. Journal of the China Railway Society, 2010, 32 (1): 104-108. (in Chinese). doi: 10.3969/j.issn.1001-8360.2010.01.018 [5] POLACH O, Characteristic parameters of nonlinear wheel/rail contact geometry[J]. Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility, 2010, 48 (S): 19-36. [6] ARNOLD M, NETTER H. Approximation of contact geometry in the dynamical simulation of wheel/rail systems[J]. Mathematical Modelling of Systems, 1997, 3 (2): 1-24. [7] ARNOLD M, NETTER H. Wear profiles and the dynamical simulation of wheel-rail systems[C]∥ECMI. Proceeding of the9th Conference of the European Consortium for Methematics in Industry: Progress in Industrial Mathematics. Stuttgart: B. G. Teubner Stuttgart Leipzig, 1997: 77-84. [8] ARNOLD M. The geometry of wheel-rail contact[C]∥FRISCHMUTH K. Proceedings of the First Workshop on Dynamics of Wheel-Rail Systems. Rostock: University of Rostock, 1994: 1-6. [9] SCHUPP G, WEIDEMANN C, MAUER L. Modelling the contact between wheel and rail within multibody system simulation[J]. Vehicle System Dynamics, 2004, 41 (5): 349-364. doi: 10.1080/00423110412331300326 [10] NETTER H, SCHUPP G, RULKA W, et al. New aspects of contact modelling and validation within multibody system simulation of railway vehicles[J]. Vehicle System Dynamics, 1998, 29 (S): 246-269. [11] BS EN 13715∶2006, railway applications—wheelsets and bogies—wheels—wheels tread[S]. [12] 张剑, 王玉艳, 金学松, 等. 改善轮轨接触状态的车轮型面几何设计方法[J]. 交通运输工程学报, 2011, 11 (1): 36-42. doi: 10.3969/j.issn.1671-1637.2011.01.007ZHANG Jian, WANG Yu-yan, JIN Xue-song, et al. Geometric design method of wheel profile for improving wheel and rail contact status[J]. Journal of Traffic and Transportation Engineering, 2011, 11 (1): 36-42. (in Chinese). doi: 10.3969/j.issn.1671-1637.2011.01.007 [13] 钟晓波, 沈钢. 高速列车车轮踏面外形优化设计[J]. 同济大学学报: 自然科学版, 2011, 39 (5): 710-715. doi: 10.3969/j.issn.0253-374x.2011.05.015ZHONG Xiao-bo, SHEN Gang. Optimization for high-speed wheel profiles[J]. Journal of Tongji University: Natural Science, 2011, 39 (5): 710-715. (in Chinese). doi: 10.3969/j.issn.0253-374x.2011.05.015 [14] 崔大宾, 李立, 金学松, 等. 基于轮轨法向间隙的车轮踏面优化方法[J]. 机械工程学报, 2009, 45 (12): 205-211. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200912038.htmCUI Da-bin, LI Li, JIN Xue-song, et al. Numerical optimization technique for wheel profile considering the normal gap of the wheel and rail[J]. Journal of Mechanical Engineering, 2009, 45 (12): 205-211. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200912038.htm [15] 薛弼一, 崔大宾, 李立, 等. 车轮踏面并行反求设计方法[J]. 机械工程学报, 2013, 49 (16): 8-16. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201316003.htmXUE Bi-yi, CUI Da-bin, LI Li, et al. Parallel inverse design method of wheel profile[J]. Journal of Mechanical Engineering, 2013, 49 (16): 8-16. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201316003.htm [16] 周睿, 罗仁. 地铁车辆轮轨匹配关系研究[J]. 铁道车辆, 2010, 48 (9): 1-3, 12. doi: 10.3969/j.issn.1002-7602.2010.09.001ZHOU Rui, LUO Ren. Research on wheel-rail matching relation of metro vehicles[J]. Rolling Stock, 2010, 48 (9): 1-3, 12. (in Chinese). doi: 10.3969/j.issn.1002-7602.2010.09.001 [17] ARSLAN M A, KAYABASI O. 3-D rail-wheel contact analysis using FEA[J]. Advances in Engineering Software, 2012, 45 (1): 325-331. doi: 10.1016/j.advengsoft.2011.10.009 [18] WEN Ze-feng, JIN Xue-song, ZHANG Wei-hua. Contact-impact stress analysis of rail joint region using the dynamic finite element method[J]. Wear, 2005, 258 (7/8): 1301-1309. [19] BS EN 15302∶2008, railway applications—method for determining the equivalent conicity[S]. [20] POLACH O. Influence of wheel/rail contact geometry on the behavior of a railway vehicle at stability limit[C]∥Eindhoven University of Technology. Proceedings of the ENOC-2005. Eindhoven: Eindhoven University of Technology, 2005: 2203-2210. [21] 干锋, 戴焕云, 高浩, 等. 铁道车辆不同踏面等效锥度和轮轨接触关系计算[J]. 铁道学报, 2013, 35 (9): 19-24. doi: 10.3969/j.issn.1001-8360.2013.09.004GAN Feng, DAI Huan-yun, GAO Hao, et al. Calculation of equivalent conicity and wheel-rail contact relationship of different railway vehicle treads[J]. Journal of the China Railway Society, 2013, 35 (9): 19-24. (in Chinese). doi: 10.3969/j.issn.1001-8360.2013.09.004