留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于边缘粒子滤波的高速列车性能参数估计方法

丁建明 林建辉 王晗 黄晨光 赵洁

丁建明, 林建辉, 王晗, 黄晨光, 赵洁. 基于边缘粒子滤波的高速列车性能参数估计方法[J]. 交通运输工程学报, 2014, 14(3): 52-57.
引用本文: 丁建明, 林建辉, 王晗, 黄晨光, 赵洁. 基于边缘粒子滤波的高速列车性能参数估计方法[J]. 交通运输工程学报, 2014, 14(3): 52-57.
DING Jian-ming, LIN Jian-hui, WANG Han, HUANG Chen-guang, ZHAO Jie. Performance parameter estimation method of high-speed train based on Rao-Blackwellised particle filter[J]. Journal of Traffic and Transportation Engineering, 2014, 14(3): 52-57.
Citation: DING Jian-ming, LIN Jian-hui, WANG Han, HUANG Chen-guang, ZHAO Jie. Performance parameter estimation method of high-speed train based on Rao-Blackwellised particle filter[J]. Journal of Traffic and Transportation Engineering, 2014, 14(3): 52-57.

基于边缘粒子滤波的高速列车性能参数估计方法

基金项目: 

国家自然科学基金项目 61134002

国家自然科学基金项目 51305358

国家863计划项目 2011AA110501

详细信息
    作者简介:

    丁建明(1981-), 男, 四川平昌人, 西南交通大学助理研究员, 工学博士, 从事机车车辆故障诊断研究

  • 中图分类号: U260.11

Performance parameter estimation method of high-speed train based on Rao-Blackwellised particle filter

More Information
    Author Bio:

    DING Jian-ming (1981-), male, assistant researcher, PhD, +86-28-87600558, fdingjianming@126.com

  • 摘要: 针对高速列车参数估计中参数增广为状态变量时所出现的非线性问题, 提出一种基于边缘粒子滤波的参数估计方法。在Rao-Blackwellised (RB) 框架下, 将高速列车性能参数估计的概率模型进行分块化处理。应用卡尔曼滤波对线性的状态块进行一步预测和测量更新, 应用粒子滤波对非线性的参数块进行一步预测与测量更新, 实现参数的动态估计, 并通过理论分析和高速列车参数估计实例验证了方法的有效性。分析结果表明: 与经典的扩展卡尔曼滤波相比, 提出的方法具有对初值免疫和算法稳定的特点; 参数估计误差快速收敛到5%以内, 且提出的参数估计方法是无偏估计, 具有较好的工程适用性。

     

  • 图  1  高速列车横向动力学模型

    Figure  1.  Horizontal dynamics model of high-speed train

    图  2  参数x1的估计结果

    Figure  2.  Estimation result of parameter x1

    图  3  参数x2的估计结果

    Figure  3.  Estimation result of parameter x2

    图  4  参数x3的估计结果

    Figure  4.  Estimation result of parameter x3

    图  5  参数x4的估计结果

    Figure  5.  Estimation result of parameter x4

    图  6  高速列车性能参数归一化估计

    Figure  6.  Normalized estimations of performance parameters of high-speed train

    图  7  性能参数估计的相对误差

    Figure  7.  Relative estimation errors of performance parameters

  • [1] 丁建明, 林建辉, 赵洁, 等. 车辆悬挂弹簧故障检测的能量传递特性比较法[J]. 交通运输工程学报, 2013, 13 (4): 51-55, 62. doi: 10.3969/j.issn.1671-1637.2013.04.008

    DING Jian-ming, LIN Jian-hui, ZHAO Jie, et al. Comparison method of energy transfer characteristics for fault detection of vehicle suspension spring[J]. Journal of Traffic and Transportation Engineering, 2013, 13 (4): 51-55, 62. (in Chinese). doi: 10.3969/j.issn.1671-1637.2013.04.008
    [2] 池茂儒, 张卫华, 曾京, 等. 高速客车转向架悬挂参数分析[J]. 大连交通大学学报, 2007, 28 (3): 13-19. doi: 10.3969/j.issn.1673-9590.2007.03.004

    CHI Mao-ru, ZHANG Wei-hua, ZENG Jing, et al. Study of suspension parameter of high speed passenger car bogies[J]. Journal of Dalian Jiaotong University, 2007, 28 (3): 13-19. (in Chinese). doi: 10.3969/j.issn.1673-9590.2007.03.004
    [3] 梁树林, 朴明伟, 郝剑华, 等. 基于3种典型踏面的高速转向架稳定性研究[J]. 中国铁道科学, 2010, 31 (3): 57-63. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201003012.htm

    LIANG Shu-lin, PIAO Ming-wei, HAO Jian-hua, et al. Study on stability of the high-speed bogie based on three typical wheel treads[J]. China Railway Science, 2010, 31 (3): 57-63. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201003012.htm
    [4] 孟宏, 翟婉明, 王开云, 等. 高性能机车转向架的研发[J]. 铁道学报, 2005, 27 (2): 35-39. doi: 10.3321/j.issn:1001-8360.2005.02.006

    MENG Hong, ZHAI Wan-ming, WANG Kai-yun, et al. Research and development of high performance bogie of locomotive[J]. Journal of the China Railway Society, 2005, 27 (2): 35-39. (in Chinese). doi: 10.3321/j.issn:1001-8360.2005.02.006
    [5] LEE S Y, CHENG Y C. Hunting stability analysis of highspeed railway vehicle trucks on tangent tracks[J]. Journal of Sound and Vibration, 2005, 282 (3/4/5): 881-898.
    [6] CHENG Y C, LEE S Y, CHEN H H. Modeling and nonlinear hunting stability analysis of high-speed railway vehicle moving on curved tracks[J]. Journal of Sound and Vibration, 2009, 324 (1/2): 139-160.
    [7] GHANEM R, SHINOZUKA M. Structural system identification 1: theory[J]. Journal of Engineering Mechanics, 1995, 121 (2): 255-264. doi: 10.1061/(ASCE)0733-9399(1995)121:2(255)
    [8] LI Ping, GOODALL R, KADIRKAMANATHAN V. Estimation of parameters in a linear state space model using a Rao-Blackwellised particle filter[J]. IEE Proceedings-Control Theory and Applications, 2004, 151 (6): 727-738. doi: 10.1049/ip-cta:20041008
    [9] LI Ping, GOODALL R, WESTON P, et al. Estimation of railway vehicle suspension parameters for condition monitoring[J]. Control Engineering Practice, 2007, 15 (1): 43-55. doi: 10.1016/j.conengprac.2006.02.021
    [10] BRUNI S, GOODALL R, MEI T X, et al. Control and monitoring for railway vehicle dynamics[J]. Vehicle System Dynamics, 2007, 45 (7): 743-779.
    [11] SONG Y, GRIZZLE J W. The extended Kalman filter as a local asymptotic observer for discrete-time nonlinear system[J]. Journal of Mathematical Systems, Estimation and Control, 1995, 5 (1): 59-78.
    [12] SCHÖN T, GUSTAFSSON F, NORDLUND P. Marginalized particle filters for mixed linear/nonlinear state-space models[J]. IEEE Transactions on Signal Processing, 2005, 53 (7): 2279-2288. doi: 10.1109/TSP.2005.849151
    [13] DOUCET A, GORDON N J, KRISHNAMURTHY V. Particle filters for state estimation of jump Markov linear systems[J]. IEEE Transactions on Signal Processing, 2001, 49 (3): 613-624. doi: 10.1109/78.905890
    [14] SATRIA M, BEST M C. State estimation of vehicle handling dynamics using non-linear robust extended adaptive Kalman filter[J]. Vehicle System Dynamics, 2004, 41 (S): 103-112.
    [15] ARULAMPALAM M S, MASKELL S, GORDON N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002, 50 (2): 174-188. doi: 10.1109/78.978374
  • 加载中
图(7)
计量
  • 文章访问数:  616
  • HTML全文浏览量:  134
  • PDF下载量:  783
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-07
  • 刊出日期:  2014-06-25

目录

    /

    返回文章
    返回