留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

短时交通流预测的改进K近邻算法

谢海红 戴许昊 齐远

谢海红, 戴许昊, 齐远. 短时交通流预测的改进K近邻算法[J]. 交通运输工程学报, 2014, 14(3): 87-94.
引用本文: 谢海红, 戴许昊, 齐远. 短时交通流预测的改进K近邻算法[J]. 交通运输工程学报, 2014, 14(3): 87-94.
XIE Hai-hong, DAI Xu-hao, QI Yuan. Improved K-nearest neighbor algorithm for short-term traffic flow forecasting[J]. Journal of Traffic and Transportation Engineering, 2014, 14(3): 87-94.
Citation: XIE Hai-hong, DAI Xu-hao, QI Yuan. Improved K-nearest neighbor algorithm for short-term traffic flow forecasting[J]. Journal of Traffic and Transportation Engineering, 2014, 14(3): 87-94.

短时交通流预测的改进K近邻算法

基金项目: 

国家973计划项目 2012CB725403

详细信息
    作者简介:

    谢海红(1963-), 女, 山东烟台人, 北京交通大学副教授, 从事城市交通规划与管理研究

  • 中图分类号: U491.112

Improved K-nearest neighbor algorithm for short-term traffic flow forecasting

More Information
    Author Bio:

    XIE Hai-hong (1963-), female, associate professor, +86-10-51687138, xiehaihong16@163.com

  • 摘要: 分析了原有的短时交通流预测的K近邻算法, 用模式距离搜索方法代替原有的欧氏距离搜索方法, 引入多元统计回归模型, 建立了一种改进的短时交通流预测的K近邻算法, 并以北京市某路段进行实例验证。试验结果表明: 当K取23时, 利用改进的K近邻算法, 预测结果的均方误差、平均相对误差、平均绝对误差分别为31.43%、4.17%、0.27%;利用原有的K近邻算法, 预测结果的均方误差、平均相对误差、平均绝对误差分别为33.33%、4.40%、0.28%;利用历史平均模型, 预测结果的均方误差、平均相对误差、平均绝对误差分别为46.20%、11.40%、0.48%。可见, 改进的K近邻算法的预测精度明显高于其他2种方法, 在提高搜索效率的同时准确地刻画了交通流的真实情况。

     

  • 图  1  算法流程

    Figure  1.  Algorithm flow

    图  2  多元统计回归算法流程

    Figure  2.  Flow of multiple statistical regression algorithm

    图  3  实测现场

    Figure  3.  Measurement field

    图  4  交通量

    Figure  4.  Traffic volumes

    图  5  ξK关系

    Figure  5.  Relationship between ξ and K

    图  6  Tm曲线

    Figure  6.  Tm curve

    图  7  欧氏距离搜索结果

    Figure  7.  Search result by using Euclidean distance

    图  8  模式距离搜索结果

    Figure  8.  Search result by using pattern distance

    图  9  均方误差

    Figure  9.  Errors of mean square

    图  10  平均绝对误差

    Figure  10.  Mean absolute errors

    图  11  平均相对误差

    Figure  11.  Average relative errors

    表  1  欧氏距离与模式距离搜索结果

    Table  1.   Search results with Euclidean distance and pattern distance

    下载: 导出CSV

    表  2  因子排序结果

    Table  2.   Factor order result

    下载: 导出CSV
  • [1] 贺国光, 李宇, 马寿峰. 基于数学模型的短时交通流预测方法探讨[J]. 系统工程理论与实践, 2000, 20 (12): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL200012007.htm

    HE Guo-guang, LI Yu, MA Shou-feng. Discussion on shortterm traffic flow forecasting methods based on mathematical models[J]. Systems Engineering—Theory and Practice, 2000, 20 (12): 51-56. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL200012007.htm
    [2] SMITH B L, DEMETSKY M J. Traffic flow forecasting: comparison of modeling approaches[J]. Journal of Transportation Engineering, 1997, 123 (4): 261-266. doi: 10.1061/(ASCE)0733-947X(1997)123:4(261)
    [3] KREER J B. A comparison of predictor algorithms for computerized control[J]. Traffic Engineering, 1975, 45 (4): 51-56.
    [4] WILLIAMS B M, HOEL L A. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results[J]. Journal of Transportation Engineering, 2003, 129 (6): 664-672. doi: 10.1061/(ASCE)0733-947X(2003)129:6(664)
    [5] OKUTANI I, STEPHANEDES Y J. Dynamic prediction of traffic volume through Kalman filtering theory[J]. Transportation Research Part B: Methodological, 1984, 18 (1): 1-11. doi: 10.1016/0191-2615(84)90002-X
    [6] SIMON D, SIMON D L. Kalman filtering with inequality constraints for turbofan engine health estimation[J]. Control Theory and Applications, 2006, 153 (3): 371-378. doi: 10.1049/ip-cta:20050074
    [7] 董春娇, 邵春福, 熊志华, 等. 基于Elman神经网络的道路网短时交通流预测方法[J]. 交通运输系统工程与信息, 2010, 10 (1): 145-151. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201001022.htm

    DONG Chun-jiao, SHAO Chun-fu, XIONG Zhi-hua, et al. Short-term traffic flow forecasting of road network based on Elman neural net work[J]. Journal of Transportation Systems Engineering and Information Technology, 2010, 10 (1): 145-151. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201001022.htm
    [8] 魏文, 余立建, 龚炯. 基于混沌理论和PSO神经网络的短时交通流预测[J]. 物流工程与管理, 2010, 32 (2): 75-77. https://www.cnki.com.cn/Article/CJFDTOTAL-SPCY201002031.htm

    WEI Wen, YU Li-jian, GONG Jiong. Short-time traffic flow prediction based on chaos and particle swarm optimized neural network[J]. Logistics Engineering and Management, 2010, 32 (2): 75-77. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SPCY201002031.htm
    [9] 承向军, 刘军, 马敏书. 基于分形理论的短时交通流预测算法[J]. 交通运输系统工程与信息, 2010, 10 (4): 106-110. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201004017.htm

    CHENG Xiang-jun, LIU Jun, MA Min-shu. Algorithm of short-term traffic flow forecasting using fractal theory[J]. Journal of Transportation System Engineering and Information Technology, 2010, 10 (4): 106-110. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201004017.htm
    [10] 樊娜, 赵祥模, 戴明, 等. 短时交通流预测模型[J]. 交通运输工程学报, 2012, 12 (4): 114-119. http://transport.chd.edu.cn/article/id/201204015

    FAN Na, ZHAO Xiang-mo, DAI Ming, et al. Short-term traffic flow prediction model[J]. Journal of Traffic and Transportation Engineering, 2012, 12 (4): 114-119. (in Chinese). http://transport.chd.edu.cn/article/id/201204015
    [11] 林德花, 袁振洲. 基于IOWA算子的短时交通流预测方法研究[J]. 科学技术与工程, 2013, 13 (25): 7596-7600. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201325063.htm

    LIN De-hua, YUAN Zhen-zhou. Research on short-term traffic flow forecasting method based on IOWA operator[J]. Science Technology and Engineering, 2013, 13 (25): 7596-7600. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201325063.htm
    [12] ISHAK S, ALECSANDRU C. Optimizing traffic prediction performance of neural networks under various topological input and traffic condition setting[J]. Journal of Transportation Engineering, 2004, 130 (7): 452-465.
    [13] SMITH B L, WILLIAMS B M R, OSWALD K. Comparison of parametric and nonparametric models for traffic flow forecasting[J]. Transportation Research Part C: Emerging Technologies, 2002, 10 (4): 303-321.
    [14] 宫晓燕, 汤淑明. 基于非参数回归的短时交通流预测与事件检测综合算法[J]. 中国公路学报, 2003, 16 (1): 82-86.

    GONG Xiao-yan, TANG Shu-ming. Integrated traffic flow forecasting and traffic incident detection algorithm based on non-parametric regression[J]. China Journal of Highway and Transport, 2003, 16 (1): 82-86. (in Chinese).
    [15] 周小鹏, 冯奇, 孙立军. 基于最近邻法的短时交通流预测[J]. 同济大学学报: 自然科学版, 2006, 34 (10): 1494-1498. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200611014.htm

    ZHOU Xiao-peng, FENG Qi, SUN Li-jun. Short-term traffic flow forecasting based on nearest neighbor algorithm[J]. Journal of Tongji University: Natural Science, 2006, 34 (10): 1494-1498. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200611014.htm
    [16] 于滨, 邬珊华, 王明华, 等. K近邻短时交通流预测模型[J]. 交通运输工程学报, 2012, 12 (2): 105-111. http://transport.chd.edu.cn/article/id/201202015

    YU Bin, WU Shan-hua, WANG Ming-hua, et al. K-nearest neighbor model of short-term traffic flow forecast[J]. Journal of Traffic and Transportation Engineering, 2012, 12 (2): 105-111. (in Chinese). http://transport.chd.edu.cn/article/id/201202015
    [17] 屈莉, 兰时勇, 张建伟. 基于浮动车数据非参数回归短时交通速度预测[J]. 计算机工程与设计, 2013, 34 (9): 3298-3332. https://www.cnki.com.cn/Article/CJFDTOTAL-SJSJ201309059.htm

    QU Li, LAN Shi-yong, ZHANG Jian-wei. Short-term traffic forecasting based on nonparametric regression and floating car data[J]. Computer Engineering and Design, 2013, 34 (9): 3298-3332. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SJSJ201309059.htm
    [18] 李振龙, 张利国, 钱海峰. 基于非参数回归的短时交通流预测研究综述[J]. 交通运输工程与信息学报, 2008, 6 (4): 34-39. https://www.cnki.com.cn/Article/CJFDTOTAL-JTGC200804009.htm

    LI Zhen-long, ZHANG Li-guo, QIAN Hai-feng. Review of the short-term traffic flow forecasting based on the non-parametric regression[J]. Journal of Transportation Engineering and Information, 2008, 6 (4): 34-39. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JTGC200804009.htm
    [19] 王达, 荣冈. 时间序列的模式距离[J]. 浙江大学学报: 工学版, 2004, 38 (7): 795-798. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC200407001.htm

    WANG Da, RONG Gang. Pattern distance of time series[J]. Journal of Zhejiang University: Engineering Science, 2004, 38 (7): 795-798. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC200407001.htm
    [20] 吴耿锋, 周佩玲, 储阅春, 等. 基于相空间重构的预测方法及其在天气预报中的应用[J]. 自然杂志, 1999, 21 (2): 107-110. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ199902011.htm

    WU Geng-feng, ZHOU Pei-ling, CHU Yue-chun, et al. Prediction based on phrase construction and its application in weather forecast[J]. Nature Magazine, 1999, 21 (2): 107-110. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ199902011.htm
    [21] 朱莉, 吴建华, 胡广书. 基于Cao算法的心率变异信号分析[J]. 航天医学与医学工程, 2009, 22 (2): 132-134. https://www.cnki.com.cn/Article/CJFDTOTAL-HYXB200902013.htm

    ZHU Li, WU Jian-hua, HU Guang-shu. Analysis of heart rate variability signal based on Cao algorithm[J]. Space Medicine and Medical Engineering, 2009, 22 (2): 132-134. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HYXB200902013.htm
    [22] 陈德望, 高海军, 陈龙, 等. 城市高速道路微波检测器RTMS的检测精度分析[J]. 公路交通科技, 2002, 19 (5): 122-124. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200205034.htm

    CHEN De-wang, GAO Hai-jun, CHEN Long, et al. Accuracy analysis of RTMS on urban freeway[J]. Journal of Highway and Transportation Research and Development, 2002, 19 (5): 122-124. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200205034.htm
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  726
  • HTML全文浏览量:  100
  • PDF下载量:  872
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-13
  • 刊出日期:  2014-06-25

目录

    /

    返回文章
    返回