留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带时间窗VRP问题的多智能体进化算法

刘欣萌 何世伟 陈胜波 路超

刘欣萌, 何世伟, 陈胜波, 路超. 带时间窗VRP问题的多智能体进化算法[J]. 交通运输工程学报, 2014, 14(3): 105-110.
引用本文: 刘欣萌, 何世伟, 陈胜波, 路超. 带时间窗VRP问题的多智能体进化算法[J]. 交通运输工程学报, 2014, 14(3): 105-110.
LIU Xin-meng, HE Shi-wei, CHEN Sheng-bo, LU Chao. Multi-agent evolutionary algorithm of VRP problem with time window[J]. Journal of Traffic and Transportation Engineering, 2014, 14(3): 105-110.
Citation: LIU Xin-meng, HE Shi-wei, CHEN Sheng-bo, LU Chao. Multi-agent evolutionary algorithm of VRP problem with time window[J]. Journal of Traffic and Transportation Engineering, 2014, 14(3): 105-110.

带时间窗VRP问题的多智能体进化算法

基金项目: 

国家973计划项目 2012CB725403

国家自然科学基金项目 61374202

详细信息
    作者简介:

    刘欣萌(1990-), 女, 陕西西安人, 北京交通大学工学硕士研究生, 从事物流与供应链管理研究

    何世伟(1969-), 男, 重庆人, 北京交通大学教授

  • 中图分类号: U491.12

Multi-agent evolutionary algorithm of VRP problem with time window

More Information
  • 摘要: 基于实用性和合理性的角度, 研究了单个配送中心带时间窗的车辆路径问题。以行驶时间最短和客户等待时间最小为目标函数, 以服务时间窗与车辆载质量为约束条件, 建立了双目标优化模型, 采用基于整数编码的多智能体进化算法求解模型, 并将计算结果与利用遗传算法求得的结果进行对比。计算结果表明: 当客户需求点的数量为13, 需求点的服务时间为5min, 车辆最大载质量为3t, 初始智能体个数为49, 最大进化代数为200次时, 经过30次计算后, 采用遗传算法的最差值为121.8min, 最优值为110.3min, 采用提出多智能体进化算法的最差值为113.6min, 最优目标值为103.6min。可见, 采用多智能体进化算法能够获得更高质量的最优解, 而且经过多次反复试验, 最终解的变化不大。

     

  • 图  1  学习方法

    Figure  1.  Learning method

    图  2  算法流程

    Figure  2.  Algorithm flow

    图  3  利用遗传算法求得的最优路径

    Figure  3.  Optimal paths by using GA

    图  4  利用多智能体进化算法求得的最优路径

    Figure  4.  Optimal paths by using NC-MAEA

    图  5  遗传算法下的收敛结果

    Figure  5.  Convergence effect under GA

    图  6  多智能体进化算法下的收敛结果

    Figure  6.  Convergence effect under NC-MAEA

    表  1  车辆行驶时间

    Table  1.   Vehicle travel times

    下载: 导出CSV

    表  2  配送量与时间窗

    Table  2.   Distribution volumes and time windows

    下载: 导出CSV

    表  3  两种算法优化结果比较

    Table  3.   Comparison of optimization results for two algorithms

    下载: 导出CSV
  • [1] CHIEN S, GAO Sheng-yan, MEEGODA J N, et al. Fleet size estimation for spreading operation considering road geometry, weather and traffic[J]. Journal of Traffic and Transportation Engineering: English Edition, 2014, 1 (1): 1-12. doi: 10.1016/S2095-7564(15)30084-2
    [2] KALLEHAUGE B. Formulations and exact algorithms for the vehicle routing problem with time windows[J]. Computers and Operations Research, 2008, 35 (7): 2307-2330. doi: 10.1016/j.cor.2006.11.006
    [3] RALPHS T K, KOPMAN L, PULLEYBLANK W R, et al. On the capacitated vehicle routing problem[J]. Mathematical Programming, 2003, 94 (2): 343-359.
    [4] KOHL N, MADSEN O B G. An optimization algorithm for the vehicle routing problem with time windows based on lagrangian relaxation[J]. Operations Research, 1997, 45 (3): 395-406. doi: 10.1287/opre.45.3.395
    [5] JULIEN B, DAVID S. On the effectiveness of set covering formulations for the vehicle routing problem with time windows[J]. Operations Research, 1997, 45 (2): 295-301. doi: 10.1287/opre.45.2.295
    [6] 吴勇, 叶春明, 马慧民, 等. 基于并行粒子群算法的带时间窗车辆路径问题[J]. 计算机工程与应用, 2007, 43 (14): 223-226. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG200714065.htm

    WU Yong, YE Chun-ming, MA Hui-min, et al. Parallel particle swarm optimization algorithm for vehicle routing problems with time windows[J]. Computer Engineering and Applications, 2007, 43 (14): 223-226. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG200714065.htm
    [7] 刘霞, 齐欢. 带时间窗的动态车辆路径问题的局部搜索算法[J]. 交通运输工程学报, 2008, 8 (5): 114-120. http://transport.chd.edu.cn/article/id/200805023

    LIU Xia, QI Huan. Local search alogrithm of dynamic vehicle routing problem with time window[J]. Journal of Traffic and Transportation Engineering, 2008, 8 (5): 114-120. (in Chinese). http://transport.chd.edu.cn/article/id/200805023
    [8] 刘志硕, 申金生, 柴跃廷. 基于自适应蚁群算法的车辆路径问题研究[J]. 控制与决策, 2005, 20 (5): 562-566. doi: 10.3321/j.issn:1001-0920.2005.05.018

    LIU Zhi-shuo, SHEN Jin-sheng, CHAI Yue-ting. Vehicle routing problem based on an adaptive ant colony algorithm[J]. Control and Decision, 2005, 20 (5): 562-566. (in Chinese). doi: 10.3321/j.issn:1001-0920.2005.05.018
    [9] 潘立军, 符卓. 求解带硬时间窗车辆路径问题的时差插入启发式算法[J]. 计算机应用, 2012, 32 (11): 3042-3043, 3070. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201211019.htm

    PAN Li-jun, FU Zhuo. Time difference insertion heuristics algorithm for vehicle routing problem with hard time window[J]. Journal of Computer Applications, 2012, 32 (11): 3042-3043, 3070. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201211019.htm
    [10] BANOS R, ORTEGA J, GIL C, et al. A simulated annealingbased parallel multi-objective approach to vehicle routing problems with time windows[J]. Expert System with Application, 2013, 40 (5): 1696-1707. doi: 10.1016/j.eswa.2012.09.012
    [11] GILLETT B E, MILLER L R. A Heuristic algorithm for the vehicle-dispatch problem[J]. Operations Research, 1974, 22 (3): 340-349.
    [12] GLOVER F. Tabu search—part Ⅰ[J]. QRSA Journal on Computing, 1989, 1 (3): 190-206.
    [13] 周屹, 李海龙, 王锐. 遗传算法求解物流配送中带时间窗的VRP问题[J]. 吉林大学学报: 理学版, 2008, 46 (2): 300-303. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDX200802029.htm

    ZHOU Yi, LI Hai-long, WANG Rui. VRP problem with time windows in the logistics and distribution solved by genetic algorithm[J]. Journal of Jilin University: Science Edition, 2008, 46 (2): 300-303. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JLDX200802029.htm
    [14] 龚延成, 郭晓汾, 尤晓铃, 等. 基于遗传算法的物流配送车辆调度问题研究[J]. 数学的实践与认识, 2004, 34 (6): 93-97. https://www.cnki.com.cn/Article/CJFDTOTAL-SSJS200406016.htm

    GONG Yan-cheng, GUO Xiao-fen, YOU Xiao-ling, et al. Solving the vehicle routing and scheduling problems by genetic algorithms[J]. Mathematics in Practice and Theory, 2004, 34 (6): 93-97. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SSJS200406016.htm
    [15] 郎茂祥, 胡思继. 用混合遗传算法求解物流配送路径优化问题的研究[J]. 中国管理科学, 2002, 10 (5): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGK200205010.htm

    LANG Mao-xiang, HU Si-ji. Study on the optimization of physical distribution routing problem by using hybrid genetic algorithm[J]. Chinese Journal of Management Science, 2002, 10 (5): 51-56. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGK200205010.htm
    [16] 马宇红, 姚婷婷, 张浩庆. 基于分区的多配送中心多车型车辆调度问题与遗传算法设计[J]. 科技导报, 2013, 31 (2): 61-67. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201302024.htm

    MA Yu-hong, YAO Ting-ting, ZHANG Hao-qing. Multidelivery centre multi-type vehicle scheduling problem based on the partition and the design of genetic algorithm[J]. Science and Technology Review, 2013, 31 (2): 61-67. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201302024.htm
    [17] 袁志. 解排列优化的整数编码多智能体进化算法[J]. 软件, 2011, 32 (5): 24-26. https://www.cnki.com.cn/Article/CJFDTOTAL-RJZZ201105009.htm

    YUAN Zhi. Number coding multi-agent evolutionary algorithm for deployment optimization[J]. Computer Engineering and Software, 2011, 32 (5): 24-26. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-RJZZ201105009.htm
    [18] 曾聪文, 古天龙. 求解装配序列规划的一种多智能体进化算法[J]. 计算机集成制造系统, 2009, 15 (9): 1803-1808. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ200909020.htm

    ZENG Cong-wen, GU Tian-long. Multi-agent evolutionary algorithm for assembly sequence planning[J]. Computer Integrated Manufacturing Systems, 2009, 15 (9): 1803-1808. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ200909020.htm
    [19] 边霞, 米良. 遗传算法理论及其应用研究进展[J]. 计算机应用研究, 2010, 27 (7): 2425-2429, 2434. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ201007006.htm

    BIAN Xia, MI Liang. Developmenton genetic algorithm theory and its applications[J]. Application Research of Computers, 2010, 27 (7): 2425-2429, 2434. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ201007006.htm
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  688
  • HTML全文浏览量:  149
  • PDF下载量:  1244
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-17
  • 刊出日期:  2014-06-25

目录

    /

    返回文章
    返回