-
摘要: 建立了装备空气弹簧的车辆系统数学模型, 推导了悬挂系统柔度系数计算公式, 分析了悬挂参数对车辆柔度系数的影响规律。设计了重锤法、角度测量法和加速度测量法测定悬挂系统柔度系数。利用重锤法对某车辆进行测试, 分析不同载质量和外轨超高工况下的动、拖车柔度系数分布。理论计算结果表明: 提高悬挂系统刚度, 增大悬挂系统横向跨距, 降低车体和构架的重心高度均可减小柔度系数, 从而可提高车辆的抗倾覆性能。试验结果表明: 拖车柔度系数大于动车柔度系数, 空载时相差0.021, 重栽时差异不大; 重载时的柔度系数大于空载状态的柔度系数, 最大相差0.109;最恶劣工况为拖车重载状态, 柔度系数最大值为0.245。柔度系数随着外轨超高的增加而增大, 且超高越大, 柔度系数增长速度越快, 因此, 在大超高线路上应严格控制车辆柔度系数。试验结果验证了理论分析的可信性, 且理论公式考虑的悬挂系统参数全面。Abstract: A mathematical model of a railway vehicle equipped with air springs was built, the theoretical formulas of flexibility coefficient for suspension system were deduced, and the effects of suspension parameters on the coefficient were studied.Gravity method, angle measuring method and acceleration measuring method were designed to measure the coefficient.Gravity method was applied to measure the coefficients of motor car and trailer under different superelevation and loading conditions respectively.Theoretical analysis result shows that the greater the stiffness and lateral distance of suspension system are, and the lower the centers of gravity for carbody and frame are, the smaller the flexibility coefficients are, which can improve the antioverturning performance of vehicle.Test result illustrates that the coefficient of trailer is greater than that of motor car with a difference of 0.021 under unloading condition, but little divergence under loading condition.The coefficient under loading condition is greater than the coefficient under unloading condition with a maximum divergence of 0.109, and the severe situation occurs under loading condition for trailer with the maximum value of 0.245.The coefficient increases with the increase of super-elevation of outer rail, and the greater the super-elevation is, the more rapid the coefficient increases, which means that the flexibility should be controlled seriously for large super-elevation track.The credibility of theoretical analysis is verified and validated by test result, and the obtained formulas are reasonable and include comprehensive suspension parameters.
-
Key words:
- railway vehicle /
- bogie /
- suspension system /
- flexibility coefficient /
- theoretical analysis and test
-
表 1 车辆基本参数
Table 1. Basic parameters of vehicle
表 2 超高量为130 mm时的柔度系数测试结果
Table 2. Test result of flexibility coefficient when super-elevation is 130 mm
表 3 不同超高量条件下的柔度系数测试结果
Table 3. Test result of flexibility coefficient under various super-elevation cases
-
[1] IWNICKI S. Handbook of Railway Vehicle Dynamics[M]. New Yorkt Taylor and Francis Group, 2006. [2] EICKHOFF B M, EVANS J R, MINNIS A J. A review of modelling methods for railway vehicle suspension components[J]. Vehicle System Dynamics, 1995, 24(6/7). 469-496. [3] 罗仁, 曾京, 戴焕云, 等. 高速动车组线路运行适应性[J]. 交通运输工程学报, 2011, 11(6);37-43. http://transport.chd.edu.cn/article/id/201106006LUO Ren, ZENG Jing, DAI Huan-yun, et al. Running adaptability of high-speed EMU[J]. Journal of Traffic and Transportation Engineering, 2011, 11(6): 37-43. (in Chinese). http://transport.chd.edu.cn/article/id/201106006 [4] EVANS J, BERG M. Challenges in simulation of rail vehicle dynamics[J]. Vehicle System Dynamics, 2009, 47(8): 1023-1048. doi: 10.1080/00423110903071674 [5] 程祖国, 沈培德. 双层客车抗侧滚稳定器研究[J]. 铁道学报, 1993, 15(1): 9-14. doi: 10.3321/j.issn:1001-8360.1993.01.002CHENG Zu-guo, SHEN Pei-de. A study of the antiroll-stabilizer used in the new-type double deck passenger coach[J]. Journal of the China Railway Society, 1993, 15(1): 9-14. (in Chinese). doi: 10.3321/j.issn:1001-8360.1993.01.002 [6] 池茂儒, 张卫华, 曾京, 等. 高速客车转向架悬挂参数分析[J]. 大连交通大学学报, 2007, 28(3): 13-19. doi: 10.3969/j.issn.1673-9590.2007.03.004CHI Mao-m, ZHANG Wei-hua, ZENG Jing, et al. Study of suspension parameter of high speed passenger car bogies[J]. Journal of Dalian Jiaotong University, 2007, 28(3): 13-19. (in Chinese). doi: 10.3969/j.issn.1673-9590.2007.03.004 [7] 李学良, 沈钢. 轨道车辆的柔性系数研究[J]. 铁道车辆, 2011, 49(8): 4-6. doi: 10.3969/j.issn.1002-7602.2011.08.002LI Xue-liang, SHEN Gang. Research on the flexibility coefficient of rail vehicles[J]. Rolling Stock, 2011, 49(8): 4-6. (in Chinese). doi: 10.3969/j.issn.1002-7602.2011.08.002 [8] 姜建东, 付茂海. 李芾. 客车转向架抗侧滚扭杆装置特性分析[J]. 铁道机车车辆, 2004, 24(5): 4-7. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC200405001.htmJIANG Jian-dong, FU Mao-hai, LI Fu. Analysis of anti-roll torsion bar of passenger bogie[J]. Railway Locomotive and Car, 2004, 24(5): 4-7. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC200405001.htm [9] 段华东. 抗侧滚扭杆对轨道车辆抗侧滚性能的影响研究[J]. 电力机车与城轨车辆, 2007, 30(5): 14-16. doi: 10.3969/j.issn.1672-1187.2007.05.004DUAN Hua-dong. A study of the impact on anti-rolling perform of railway vehicle by anti-roll bar[J]. Electric Locomotives and Mass Transit Vehicles, 2007, 30(5): 14-16. (in Chinese). doi: 10.3969/j.issn.1672-1187.2007.05.004 [10] 梁鑫, 罗世辉, 马卫华. 抗侧滚扭杆对地铁车辆动力学性能影响的研究[J]. 内燃机车, 2011, 4(1): 5-8, 12. https://www.cnki.com.cn/Article/CJFDTOTAL-LRJX201104003.htmLIANG Xin, LUO Shi-hui, MA Wei-hua. Study of the impact ondynamics performance of metro cars by anti-rolling torsion bar[J]. Diesel Locomotives, 2011, 4(1): 5-8, 12. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LRJX201104003.htm [11] JASCHINSKI A, CHOLLET H, IWNICKI S, et al. The application of roller rigs to railway vehicle dynamics[J]. Vehicle System Dynamics, 1999, 31(5/6): 345-392. [12] UIC 505-5—1977, basic conditions to common leaflets 505-1to 505-4-notes on the preparation and provisions of these leaflets[S]. [13] BS EN 14363—2005, railway application-testing for the acceptance of running characteristics of railway vehicles-testing of running behaviour and stationary tests[S]. [14] 陈晓, 吴学杰. 城轨车辆柔度系数的测试方法研究[J]. 中国测试, 2010, 36(6): 27-29. https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS201006010.htmCHEN Xiao, WU Xue-jie. Measurement method of flexibility coefficient of vehicles[J]. China Measurement and Test, 2010, 36(6): 27-29. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS201006010.htm [15] 石怀龙, 邬平波, 罗仁. 客车转向架回转阻力矩特性[J]. 交通运输工程学报, 2013, 13(4): 45-50. http://transport.chd.edu.cn/article/id/201304007SHI Huai-long, WU Ping-bo, LUO Ren. Bogie rotation resistance torque characteristics of passenger car[J]. Journal of Traffic and Transportation Engineering, 2013, 13(4): 45-50. (in Chinese). http://transport.chd.edu.cn/article/id/201304007 [16] WANG Kai-yun, HUANG Chao, ZHAI Wan-ming, et al. Progress on wheel-rail dynamic performance of railway curve negotiation[J]. Journal of Traffic and Transportation Engineering, English Edition, 2014, 1(3): 209-220.