留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于GNSS/DSRC融合的协同车辆定位方法

刘江 蔡伯根 王云鹏

刘江, 蔡伯根, 王云鹏. 基于GNSS/DSRC融合的协同车辆定位方法[J]. 交通运输工程学报, 2014, 14(4): 116-126.
引用本文: 刘江, 蔡伯根, 王云鹏. 基于GNSS/DSRC融合的协同车辆定位方法[J]. 交通运输工程学报, 2014, 14(4): 116-126.
LIU Jiang, CAI Bo-gen, WANG Yun-peng. Cooperative vehicle positioning method based on GNSS/DSRC fusion[J]. Journal of Traffic and Transportation Engineering, 2014, 14(4): 116-126.
Citation: LIU Jiang, CAI Bo-gen, WANG Yun-peng. Cooperative vehicle positioning method based on GNSS/DSRC fusion[J]. Journal of Traffic and Transportation Engineering, 2014, 14(4): 116-126.

基于GNSS/DSRC融合的协同车辆定位方法

基金项目: 

国家自然科学基金项目 U1334211

国家自然科学基金项目 61273089

中央高校基本科研业务费专项资金项目 2014JBM003

国家国际科技合作专项项目 2014DFA80260

北京市自然科学基金项目 4144081

详细信息
    作者简介:

    刘江(1985-), 男, 陕西汉中人, 北京交通大学讲师, 工学博士, 从事智能交通系统研究

  • 中图分类号: U495

Cooperative vehicle positioning method based on GNSS/DSRC fusion

More Information
  • 摘要: 以全球导航卫星系统(GNSS)定位与专用短程无线通信(DSRC)协同定位的集成信息融合为目标, 在DSRC协同定位层面, 基于水平精度因子最小化原则, 提出了一种邻车节点的优选策略。在GNSS/DSRC融合定位层面, 采用分散式融合估计思想, 设计了一种松耦合模式下的车辆组合定位方法, 基于GNSS、DSRC并行滤波进行全局估计, 利用反馈策略改善了对不同定位条件的适应能力。利用车路协同仿真平台对协同车辆定位方法进行了仿真验证。验证结果表明: 邻车节点优选策略显著提升了DSRC定位精度, 将其用于GNSS/DSRC融合定位, 在常规运行条件下, 带反馈机制的分散式估计精度优于单传感器模式与无反馈分散式估计精度; 在给定的GNSS多径干扰条件下, 东向、北向位置估计的均方根误差与单GNSS模式相比分别降低了42.6%和37.0%, 与集中式融合估计相比分别降低了24.8%和20.3%。协同车辆定位方法的定位性能优于常规定位方案, 对GNSS多径干扰条件具有良好的适应能力, 具备更优的精确性、可用性及工程应用价值。

     

  • 图  1  DE分布

    Figure  1.  Distribution of DE

    图  2  DN分布

    Figure  2.  Distribution of DN

    图  3  仿真路网

    Figure  3.  Simulated road network

    图  4  目标车辆运行轨迹

    Figure  4.  Running trajectory of target vehicle

    图  5  可用邻车数量分布

    Figure  5.  Distribution of available neighborhood vehicle number

    图  6  DSRC东向定位误差

    Figure  6.  DSRC positioning errors in east direction

    图  7  DSRC北向定位误差

    Figure  7.  DSRC positioning errors in north direction

    图  8  HDOP取值空间与策略2、3HDOP差值

    Figure  8.  Space of HDOP values and differences of HDOP values between strategy 2 and 3

    图  9  目标车辆运行轨迹估计

    Figure  9.  Estimated running trajectories of target vehicle

    图  10  六种策略东向定位误差比较

    Figure  10.  Comparison of positioning errors in east direction under six strategies

    图  11  六种策略下北向定位误差比较

    Figure  11.  Comparison of positioning errors in north direction under six strategies

    图  12  DSRC、GNSS滤波器信息分配系数

    Figure  12.  Information distribution coefficients of DSRC and GNSS filters

    图  13  不同GNSS信号条件下的HDOP值

    Figure  13.  HDOP values under different GNSS signal conditions

    图  14  不同GNSS信号条件下的可用卫星数

    Figure  14.  Available satellite numbers under different GNSS signal conditions

    图  15  不同条件下东向定位误差比较

    Figure  15.  Comparison of positioning errors in east direction under different conditions

    图  16  不同条件下北向定位误差比较

    Figure  16.  Comparison of positioning errors in north direction under different conditions

    表  1  不同策略的均方根误差比较

    Table  1.   Comparison of RMSE values under different strategies

    下载: 导出CSV
  • [1] 王云鹏, 易振国, 夏海英. 等. 基于流行病模型的车路协同预警信息交互方法[J]. 北京航空航天大学学报. 2011, 37(5): 515-518.

    WANG Yun-peng, Yl Zhen-guo. XIA Hai-ying, et al. Cooperative traffic alarming method based on epidemic model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(5): 515-518. (in Chinese).
    [2] MATTERN N, OBST M, SCHUBERT R, et al. Simulative analysis of accuracy demands of co-operative localization in the COVEL project[C]//IEEE. Proceedings of 2011 IEEE Intelligent Vehicles Symposium. Baden-Baden: IEEE, 20111516-521.
    [3] SCHLINGELHOF M, BETAILLE D, BONNIFAIT P, et al. Advanced positioning technologies for co-operative systems[J]. IET Intelligent Transport Systems, 2008, 2(2): 81-91.
    [4] TOLEDOMOREO R. ZAMORA-IZQUIERDO M A, UBEDAMINARRO B, et al. High-integrity IMM-EKF-based road vehicle navigation with low-cost GPS/SBAS/INS[J]. IEEE Transactions on Intelligent Transportation Systems, 2007, 8(3): 491-511. doi: 10.1109/TITS.2007.902642
    [5] 彭登, 徐建闽, 林培群. 城市车路协同系统的通信及定位技术研究[J]. 计算机工程与设计. 2011, 32(3): 859-862.

    PENG Deng, XU Jian-min, LIN Pei-qun. Research on communication of city cooperative vehicle infrastructure system and it's positioning technology[J]. Computer Engineering and Design, 2011, 32(3): 859-862. (in Chinese).
    [6] LI Hao, NASHASHIBI F, TOULMINET G. Localization for intelligent vehicle by fusing mono-camera, low-cost GPS and map data[C]/'IEEE. Proceedings of the 13th International IEEE Annual Conference on Intelligent Transportation Systems. Funchah IEEE, 2010: 1657-1662.
    [7] LI Kang, TAN H S, HEDRICK J K. Map-aided GPS/INS localization using a low-order constrained unscented Kalman filter[C]//IEEE. Proceedings of the 48th IEEE Conference on Decision and Control Held Jointly with 2009 28th Chinese Control Conference. Shanghai: IEEE, 2009: 4607-4612.
    [8] TOLEDO-MOREO R, BET AILLE D, PEYRET F. Lanelevel integrity provision for navigation and map matching with GNSS, dead reckoning, and enhanced maps[J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(1): 100-112. doi: 10.1109/TITS.2009.2031625
    [9] EFATMANESHNIK M, ALAM N, KEALY A, et al. Evaluation of a cooperative positioning algorithm by tight GPS/DSRC integration for vehicular networks[C]//IGNSS Society. Proceedings of International Global Navigation Satellite Systems Symposium. Tweed Heads: IGNSS Society, 2011: 1-14.
    [10] ALAM N, BALAEI A T, DEMPSTER A G. An instantaneous lane-level positioning using DSRC carrier frequency offset[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(4): 1566-1575. doi: 10.1109/TITS.2012.2195177
    [11] ALAM N. Three dimensional positioning with two GNSS satellites and DSRC for vehicles in urban canyons[C]/^Institute of Navigation. Proceedings of the 24th International Technical Meeting of the Satellite Division of the Institute of Navigation. Portland: Institute of Navigation, 2011: 3975-3983.
    [12] ALAM N, BALAEI A T, DEMPSTER A G. A DSRC dopplerbased cooperative positioning enhancement for vehicular networks with GPS availability[J]. IEEE Transactions on Vehicular Technology, 2011, 60(9): 4462-4470. doi: 10.1109/TVT.2011.2168249
    [13] REZAEI S, SENGUPTA R, KRISHNAN H, et al. Tracking the position of neighboring vehicles using wireless communications[J]. Transportation Research Part C: Emerging Technologies, 2010, 18(3): 335-350. doi: 10.1016/j.trc.2009.05.010
    [14] EFATMANESHNIK M, BALAEI A T, ALAM N, et al. A modified multidimensional scaling with embedded particle filter algorithm for cooperative positioning of vehicular networks[C]//IEEE. Proceedings of 2009 IEEE International Conference on Vehicular Electronics and Safety. Pune: IEEE, 2009: 7-12.
    [15] LI Jian, LU Wen-hua. Full truckload vehicle routing problem with profits[J]. Journal of Traffic and Transportation Engineering: English Edition, 2014, 1(2): 146-152. doi: 10.1016/S2095-7564(15)30099-4
    [16] EFATMANESHNIK M, KEALY A, BALAEI A T, et al. Information fusion for localization within vehicular networks[J]. The Journal of Navigation, 2011, 64(3): 401-416. doi: 10.1017/S0373463311000075
    [17] ANSARI K, WANG C, WANG L, et al. Vehicle-to-vehicle real-time relative positioning using 5.9 GHz DSRC media[C]//IEEE. Proceedings of 2013 IEEE 78th Vehicular Technology Conference. Las Vegas: IEEE, 2013: 1-7.
    [18] WILLIAMS T, ALVES P, LACHAPELLE G, et al. Evaluation of GPS-based methods of relative positioning for automotive safety applications[J]. Transportation Research Part C: Emerging Technologies, 2012, 23(1): 98-108.
    [19] 来磊, 曲仕茹. 交通无线传感网络运动车辆定位方法[J]. 交通运输工程学报, 2013, 13(1): 114-120. doi: 10.3969/j.issn.1671-1637.2013.01.017

    LAI Lei, QU Shi-ru. Moving vehicle location method based on traffic wireless sensor network[J]. Journal of Traffic and Transportation Engineering, 2013, 13(1): 114-120. (in Chinese). doi: 10.3969/j.issn.1671-1637.2013.01.017
    [20] PEKER A U, ACARMAN T, YAMAN C, et al. Vehicle localization enhancement with VANETs[C]//IEEE. Proceedings of 2014 IEEE Intelligent Vehicles Symposium. Lansing: IEEE, 2014: 661-666.
    [21] NAJJAR M, BONNIFAIT P. A road-matching method for precise vehicle localization using belief theory and Kalman filtering[J]. Autonomous Robots, 2005, 19(2): 173-191. doi: 10.1007/s10514-005-0609-1
    [22] PESONEN H, PICHE R. Cubature-based Kalman filters for positioning[J]/'IEEE. Proceedings of the 7th Workshop on Positioning Navigation and Communication. Piscataway: IEEE, 2010: 45-49.
    [23] ALAM N, BABAEI A, DEMPSTER A. A filtering method for improving the precision of cooperative positioning in VANETs[C]//IGNSS Society. Proceedings of International Global Navigation Satellite Systems Symposium. Tweed Heads: IGNSS Society, 2011: 45-55.
    [24] NDIENG A N, GRUYER D, GLASER S, et al. Low cost IMU-odometer-GPS ego localization for unusual maneuvers[J]. Information Fusion, 2011, 12(4): 264-274. doi: 10.1016/j.inffus.2010.06.006
    [25] ARASARATNAM I, HAYKIN S. Cubature Kalman filters[J]. IEEE Transactions on Automatic Control, 2009, 54(6): 1254-1269. doi: 10.1109/TAC.2009.2019800
    [26] CARLSON N A. Federated square root filter for decentralized parallel processes[J]. IEEE Transactions on Aerospace and Electronic Systems, 1990, 26(3): 517-525. doi: 10.1109/7.106130
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  760
  • HTML全文浏览量:  98
  • PDF下载量:  762
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-01
  • 刊出日期:  2014-08-25

目录

    /

    返回文章
    返回