留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

路基压力注浆处治的离心模型试验与数值仿真

邱延峻 刘玉良 阳恩慧 向可明

邱延峻, 刘玉良, 阳恩慧, 向可明. 路基压力注浆处治的离心模型试验与数值仿真[J]. 交通运输工程学报, 2014, 14(5): 8-18.
引用本文: 邱延峻, 刘玉良, 阳恩慧, 向可明. 路基压力注浆处治的离心模型试验与数值仿真[J]. 交通运输工程学报, 2014, 14(5): 8-18.
QIU Yan-jun, LIU Yu-liang, YANG En-hui, XIANG Ke-ming. Centrifugal model test and numerical simulation of pressure grouting in subgrade retrofitting[J]. Journal of Traffic and Transportation Engineering, 2014, 14(5): 8-18.
Citation: QIU Yan-jun, LIU Yu-liang, YANG En-hui, XIANG Ke-ming. Centrifugal model test and numerical simulation of pressure grouting in subgrade retrofitting[J]. Journal of Traffic and Transportation Engineering, 2014, 14(5): 8-18.

路基压力注浆处治的离心模型试验与数值仿真

基金项目: 

国家自然科学基金项目 50978222

国家973计划项目 2013CB036204

详细信息
    作者简介:

    邱延峻(1966-), 男, 浙江衢州人, 西南交通大学教授, 工学博士, 从事路基与路面工程研究

  • 中图分类号: U416.1

Centrifugal model test and numerical simulation of pressure grouting in subgrade retrofitting

More Information
  • 摘要: 针对绵广高速公路路基病害压力注浆处治工程, 采用现场调查测试、离心模型试验以及数值仿真对压力注浆处治路基病害的工艺过程及影响因素进行了研究。揭示斜坡路基断面几何异型是导致路基不均匀沉降的主要原因, 并进而导致路面出现纵向开裂。离心模型试验表明: 注浆方式宜采用2次注浆法, 第1次注浆压力为0.2MPa, 第2次注浆压力控制在0.40.5MPa; 注浆孔的合理间距推荐为2.0m;工程实际中应兼顾经济性, 选择合理的浆液配合比和养护时间。数值仿真结果表明: 压力注浆包括应力累积、裂纹延伸和裂缝扩张3个阶段, 土体劈裂所需要的压力随均质度及土体强度的提高而增大。

     

  • 图  1  试验路段路面开裂状况

    Figure  1.  Pavement cracking states in test section

    图  2  试验路段A测点

    Figure  2.  Survey points in test section A

    图  3  注浆模型横断面

    Figure  3.  Cross section of grouting model

    图  4  注浆设备

    Figure  4.  Grouting test rig

    图  5  不同压实度时沉降速率

    Figure  5.  Settlement rates of subgrades with different compaction degrees

    图  6  压实度与路表沉降最大值的关系

    Figure  6.  Relationship between maximum surface settlement and compaction degree

    图  7  沉降与水平距离的关系

    Figure  7.  Relationship between settlement and horizontal distance

    图  8  不同注浆压力处治后的沉降速率

    Figure  8.  Settlement rates with different grouting pressures

    图  9  注浆压力与路表沉降最大值的关系

    Figure  9.  Relationship between maximum surface settlement and grouting pressure

    图  10  不同注浆压力时沉降与水平距离的关系

    Figure  10.  Relationship between settlement and horizontal distance with different grouting pressures

    图  11  不同注浆孔间距注浆处治后的沉降速率

    Figure  11.  Settlement rates with different grouting hole spaces

    图  12  注浆孔间距与路表沉降最大值的关系

    Figure  12.  Relationship between maximum surface settlement and grouting hole space

    图  13  不同注浆孔间距时沉降与水平距离的关系

    Figure  13.  Relationship between settlement and horizontal distance with different grouting hole spaces

    图  14  浆液配合比与沉降速率的关系

    Figure  14.  Relationship between settlement rate and mix proportion 0.003 86mm·d-1

    图  15  不同浆液配合比时沉降与水平距离的关系

    Figure  15.  Relationship between settlement and horizontal distance with different mix proportions

    图  16  养护时间与沉降速率的关系

    Figure  16.  Relationship between settlement rate and maintenance time

    图  17  不同养护时间下沉降与水平距离的关系

    Figure  17.  Relationship between settlement and horizontal distance with different maintenance times

    图  18  劈裂过程

    Figure  18.  Splitting process

    图  19  不同土体压力计算结果

    Figure  19.  Pressure calculation results of different soils

    表  1  离心模型试验参数

    Table  1.   Parameters of centrifugal model test

    下载: 导出CSV

    表  2  数值计算材料参数

    Table  2.   Material parameters of numerical calculation

    下载: 导出CSV

    表  3  各计算阶段压力

    Table  3.   Pressures of different calculation stages

    下载: 导出CSV
  • [1] 四川省交通厅公路规划勘察设计研究院. 绵广高速公路二期路面病害调查报告[R]. 成都: 四川省交通厅公路规划勘察设计研究院, 2006.
    [2] 邓卫东, 张兴强, 陈波, 等. 路基不均匀沉降对沥青路面受力变形影响的有限元分析[J]. 中国公路学报, 2004, 17 (1): 12-15. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200401003.htm

    DENG Wei-dong, ZHANG Xing-qiang, CHEN Bo, et al. Nonlinear FEM analysis of influence of asphalt pavement under non-homogenous settlement of roadbed[J]. China Journal of Highway and Transport, 2004, 17 (1): 12-15. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200401003.htm
    [3] 阳恩慧. 斜坡路基不均匀沉降及其对路面结构的影响分析[D]. 成都: 西南交通大学 , 2008.

    YANG En-hui. Differential settlement of embankments over sloped ground and its influence on pavement structure[D]. Chengdu: Southwest Jiaotong University, 2008. (in Chinese).
    [4] 张良, 魏永幸, 罗强. 基于离心模型试验的斜坡软弱土地基路堤变形特性研究[J]. 铁道建筑技术, 2004 (1): 51-53. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJS200401017.htm

    ZHANG Liang, WEI Yong-xing, LUO Qiang. Research on the deformation characteristics of the sloped embankment on the soft soil foundation based on the centrifugal model test[J]. Railway Construction Technology, 2004 (1): 51-53. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJS200401017.htm
    [5] 刘宏, 张倬元, 韩文喜. 用离心模型试验研究高填方地基沉降[J]. 西南交通大学学报, 2003, 38 (3): 323-326. doi: 10.3969/j.issn.0258-2724.2003.03.019

    LIU Hong, ZHANG Zhuo-yuan, HAN Wen-xi. Centrifugal model tests for settlement of high embankment[J]. Journal of Southwest Jiaotong University, 2003, 38 (3): 323-326. (in Chinese). doi: 10.3969/j.issn.0258-2724.2003.03.019
    [6] 蒋鑫, 魏永幸, 邱延峻. 斜坡软弱地基填方工程数值仿真[J]. 交通运输工程学报, 2002, 2 (3): 41-46. http://transport.chd.edu.cn/article/id/200203009

    JIANG Xin, WEI Yong-xing, QIU Yan-jun. Numerical simulation of subgrade embankment on sloped weak ground[J]. Journal of Traffic and Transportation Engineering, 2002, 2 (3): 41-46. (in Chinese). http://transport.chd.edu.cn/article/id/200203009
    [7] 魏永幸, 罗强, 邱延峻. 斜坡软弱地基填方工程特性及工程技术研究[J]. 铁道工程学报, 2006 (9): 10-15. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC200609002.htm

    WEI Yong-xing, LUO Qiang, QIU Yan-jun. Research on engineering characteristics and engineering techniques for filling of slope weak foundation[J]. Journal of Railway Engineering Society, 2006 (9): 10-15. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC200609002.htm
    [8] 蒋鑫, 邱延峻, 魏永幸. 基于强度折减法的斜坡软弱地基填方工程特性分析[J]. 岩土工程学报, 2007, 29 (4): 622-627. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200704026.htm

    JIANG Xin, QIU Yan-jun, WEI Yong-xing. Engineering behavior of subgrade embankments on sloped weak ground based on strength reduction FEM[J]. Chinese Journal of Geotechnical Engineering, 2007, 29 (4): 622-627. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200704026.htm
    [9] QIU Yan-jun, WEI Yong-xing, LUO Qiang. Highway embankments over sloped ground and influence on pavement responses[C]//PENG Qi-yuan, WANG K, QIU Yan-jun, et al. International Conference on Transportation Engineering2007. Chengdu: ASCE, 2007: 1615-1620.
    [10] 王生俊. 化学加固法在黄土地区高速公路中的应用[J]. 中外公路, 2003, 23 (4): 93-95. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL200304032.htm

    WANG Sheng-jun. Application of chemical reinforcement method in loess area highway[J]. Journal of China and Foreign Highway, 2003, 23 (4): 93-95. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL200304032.htm
    [11] 芮勇勤, 袁海利, 袁臻, 等. 岩溶地区地下洞河诱发路基失稳处治分析[J]. 地下空间与工程学报, 2005, 1 (7): 1100-1103, 1108. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2005S1031.htm

    RUI Yong-qin, YUAN Hai-li, YUAN Zhen, et al. Processing analysis on roadbed and subgrade instability caused by underground cavity and river in Karst area[J]. Chinese Journal of Underground Space and Engineering, 2005, 1 (7): 1100-1103, 1108. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2005S1031.htm
    [12] 杨世基, 郝中海, 吴立坚, 等. 公路填石路堤的压实[J]. 公路交通科技, 1999, 16 (4): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK199904000.htm

    YANG Shi-ji, HAO Zhong-hai, WU Li-jian, et al. Improvement on compaction techniques of highway stone fill embankment[J]. Journal of Highway and Transportation Research and Development, 1999, 16 (4): 1-4. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK199904000.htm
    [13] 李宁, 张平, 闫建文. 灌浆的数值仿真分析模型探讨[J]. 岩石力学与工程学报, 2002, 21 (3): 326-330. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200203006.htm

    LI Ning, ZHANG Ping, YAN Jian-wen. Numerical modeling of grouting in geoengineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21 (3): 326-330. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200203006.htm
    [14] 李连崇, 杨天鸿, 唐春安, 等. 岩石水压致裂过程的耦合分析[J]. 岩石力学与工程学报, 2003, 22 (7): 1060-1066. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200307002.htm

    LI Lian-chong, YANG Tian-hong, TANG Chun-an, et al. Coupling analysis on hydraulic fracturing process of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22 (7): 1060-1066. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200307002.htm
    [15] 唐智伟, 赵成刚. 注浆抬升地层的机制、解析解及数值模拟分析[J]. 岩土力学, 2008, 29 (6): 1512-1516. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200806015.htm

    TANG Zhi-wei, ZHAO Cheng-gang. Mechanisms of ground heave by grouting and analytical solutions & amp; amp; numerical modeling[J]. Rock and Soil Mechanics, 2008, 29 (6): 1512-1516. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200806015.htm
    [16] VAUGHAN P R. The use of hydraulic fracturing tests to detect crack formation in embankment dam cores[R]. London: Imperial College, 1971.
    [17] BRADY B H G, BROWN E T. Rock Mechanics for Underground Mining[M]. London: Chapman & amp; amp; Hall, 1993.
    [18] 闫常赫. 路基土体注浆离心模型试验研究及数值模拟分析[D]. 成都: 西南交通大学, 2008.

    YAN Chang-he. Centrifugal model test study of subgrade soil grouting and numerical simulation[D]. Chengdu: Southwest Jiaotong University, 2008. (in Chinese).
  • 加载中
图(19) / 表(3)
计量
  • 文章访问数:  654
  • HTML全文浏览量:  141
  • PDF下载量:  812
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-11
  • 刊出日期:  2014-10-25

目录

    /

    返回文章
    返回