留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混合设计的高性能钢梁抗弯性能试验

段兰 唐友明 王春生 王继明

段兰, 唐友明, 王春生, 王继明. 混合设计的高性能钢梁抗弯性能试验[J]. 交通运输工程学报, 2014, 14(5): 19-28.
引用本文: 段兰, 唐友明, 王春生, 王继明. 混合设计的高性能钢梁抗弯性能试验[J]. 交通运输工程学报, 2014, 14(5): 19-28.
DUAN Lan, TANG You-ming, WANG Chun-sheng, WANG Ji-ming. Bending behavior test of hybrid high performance steel beam[J]. Journal of Traffic and Transportation Engineering, 2014, 14(5): 19-28.
Citation: DUAN Lan, TANG You-ming, WANG Chun-sheng, WANG Ji-ming. Bending behavior test of hybrid high performance steel beam[J]. Journal of Traffic and Transportation Engineering, 2014, 14(5): 19-28.

混合设计的高性能钢梁抗弯性能试验

基金项目: 

教育部新世纪优秀人才支持计划项目 NCET-07-0121

霍英东青年教师基金项目 101078

交通运输部科技项目 2011 318 494 890

详细信息
    作者简介:

    段兰(1985-), 女, 陕西乾县人, 长安大学讲师, 工学博士, 从事钢桥与组合结构桥梁研究

  • 中图分类号: U448.36

Bending behavior test of hybrid high performance steel beam

More Information
    Author Bio:

    DUAN Lan(1985-), female, lecturer, PhD, +86-29-82334830, DL0310DL@163.com

  • 摘要: 采用两点加载的方式, 对3片混合设计的高性能HPS 485W工字钢梁进行抗弯性能试验, 分析了截面几何参数对试验梁抗弯承载力、弹塑性变形和破坏形态的影响。结合跨中单点加载的试验结果, 对比分析了不同加载方式对试验梁抗弯承载力的影响, 建立了能够准确模拟试验梁抗弯过程的有限元模型, 在非厚实截面范围内对混合设计的高性能钢模型梁进行了关键参数的数值分析。分析结果表明: 对两点加载的试验梁, 抗弯破坏形态为纯弯段区出现受压翼缘与受压区腹板的局部屈曲; 随着翼缘宽厚比的降低, 钢梁的塑性转动能力明显提高; 随着腹板高厚比的增加, 钢梁的抗弯强度和延性均会降低; 对相同几何尺寸的模型梁, 加载方式改变时, 钢梁的抗弯过程相似, 但控制钢梁失效的破坏形态不同; 对混合设计的钢梁, 建议腹板与翼缘材料强度等级差不大于2个强度等级。

     

  • 图  1  混合钢梁横截面应力分布

    Figure  1.  Stress distribution of hybrid steel beam cross profile

    图  2  等强钢梁横截面应力分布

    Figure  2.  Stress distribution of homogenous strength steel beam cross profile

    图  3  钢梁加载试验

    Figure  3.  Loading test of steel beam

    图  4  试验装置

    Figure  4.  Testing device

    图  5  1号和2号试验梁的抗弯过程

    Figure  5.  Bending procedures of test beams 1 and 2

    图  6  1号试验梁破坏形态

    Figure  6.  Failure mode of test beam 1

    图  7  2号试验梁破坏形态

    Figure  7.  Failure mode of test beam 2

    图  8  1号和3号试验梁抗弯过程

    Figure  8.  Bending procedures of test beams 1and 3

    图  9  1号梁腹板荷载比-局部曲率曲线

    Figure  9.  Load ratio and local curvature curves of web for beam 1

    图  10  3号梁腹板荷载比-局部曲率曲线

    Figure  10.  Load ratio and local curvature curves of web for beam 3

    图  11  不同加载方式下试验梁的抗弯过程

    Figure  11.  Bending procedures of test beams with different loading methods

    图  12  拉伸试样

    Figure  12.  Tensile specimens

    图  13  工程应力-应变曲线

    Figure  13.  Engineering stress and strain curves

    图  14  残余应力分布模型

    Figure  14.  Residual stress distribution model

    图  15  1号梁荷载-挠度曲线

    Figure  15.  Load and deformation curves of beam 1

    图  16  考虑翼缘尺寸效应的跨中弯矩比-平均转角曲线

    Figure  16.  Midspan moment ratio and average rotation curves considering flange dimension effect

    图  17  考虑腹板尺寸效应的跨中弯矩比-平均转角曲线

    Figure  17.  Midspan moment ratio and average rotation curves considering web dimension effect

    图  18  不同材料匹配下时的跨中弯矩比与平均转角曲线

    Figure  18.  Middle span moment ratio versus average rotation curves with different material matches

    表  1  抗弯试验梁实际尺寸

    Table  1.   Actual dimensions of bending specimens

    下载: 导出CSV

    表  2  不同加载方式的试验梁

    Table  2.   Test beams with different loading methods

    下载: 导出CSV

    表  3  高性能钢HPS 485W应力-应变取值

    Table  3.   Stress and strain values for high performance steel HPS 485W

    下载: 导出CSV

    表  4  考虑翼缘尺寸效应的模型梁几何尺寸

    Table  4.   Model beam dimensions considering flange dimension effect

    下载: 导出CSV

    表  5  考虑腹板尺寸效应的模型梁几何尺寸

    Table  5.   Model beam dimensions considering web dimension effect

    下载: 导出CSV
  • [1] WANG Chun-sheng, DUAN Lan, ZHU Jing-wei, et al. Innovative research of high performance and sustainable steel bridges[C]//Xiamen University. International Symposium on Innovation & amp; amp; Sustainability of Structures in Civil Engineering. Xiamen: Xiamen University, 2011: 951-956.
    [2] LIU Xiao-gang, FAN Jian-sheng, NIE Jian-guo, et al. Behavior of composite rigid frame bridge under bi-directional seismic excitations[J]. Journal of Traffic and Transportation Engineering: English Edition, 2014, 1 (1): 62-71. doi: 10.1016/S2095-7564(15)30090-8
    [3] 陈华婷, 张磊, 黄艳. 美国高性能钢工字形钢板梁新型截面形式研究[J]. 世界桥梁, 2011 (5): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL201105010.htm

    CHEN Hua-ting, ZHANG Lei, HUANG Yan. Research of innovative section forms of I-shape high performance steel plate beam in the United States[J]. World Bridges, 2011 (5): 35-39. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL201105010.htm
    [4] AZIZINAMINI A, BARTH K, DEXTER R, et al. High performance steel: research front—historical account of research activities[J]. Journal of Bridge Engineering, 2004, 9 (3): 212-217. doi: 10.1061/(ASCE)1084-0702(2004)9:3(212)
    [5] EARLS C J. On the inelastic failure of high strength steel I-shaped beams[J]. Journal of Constructional Steel Research, 1999, 49 (1): 1-24. doi: 10.1016/S0143-974X(98)00204-1
    [6] EARLS C J. Influence of material effects on structural ductility of compact I-shaped beams[J]. Journal of Structural Engineering, 2000, 126 (11): 1268-1278. doi: 10.1061/(ASCE)0733-9445(2000)126:11(1268)
    [7] EARLS C J, SHAH B J. High performance steel bridge girder compactness[J]. Journal of Constructional Steel Research, 2002, 58 (5/6/7/8): 859-880.
    [8] SALEM E S. Flexural strength and ductility of highway bridge I-girders fabricated from HPS-100Wsteel[D]. Bethlehem: Lehigh University, 2004.
    [9] BARTH K E, WHITE D W, MOBB B M. Negative bending resistance of HPS70Wgirders[J]. Journal of Constructional Steel Research, 2000, 53 (1): 1-31. doi: 10.1016/S0143-974X(99)00037-1
    [10] BARTH K E. Moment-rotation characteristics for inelastic design of steel bridges beams and girders[D]. West Lafayette: Purdue University, 1996.
    [11] 田越. 500MPa级高性能钢(Q500qE) 在铁路钢桥中的应用研究[D]. 北京: 中国铁道科学研究院, 2010.

    TIAN Yue. Research on 500 MPa class high performance steel (Q500qE) using in railway steel bridges[D]. Beijing: China Academy of Railway Sciences, 2010. (in Chinese).
    [12] 潘永杰, 张玉玲, 田越, 等. Q500qE高性能钢工型梁极限承载力研究[J]. 中国铁道科学, 2011, 32 (3): 16-20. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201103003.htm

    PAN Yong-jie, ZHANG Yu-ling, TIAN Yue, et al. Study on the ultimate bearing capacity of I-shaped beam made by high performance steel Q500qE[J]. China Railway Science, 2011, 32 (3): 16-20. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201103003.htm
    [13] 段兰. 高性能钢HPS 485W力学性能及混合钢梁的抗弯性能研究[D]. 西安: 长安大学, 2010.

    DUAN Lan. Mechanical characteristics of high performance steel HPS 485Wand bending behavior study of hybrid girder[D]. Xi & amp; amp; apos; an: Chang & amp; amp; apos; an University, 2010. (in Chinese).
    [14] 王春生, 段兰, 王继明, 等. 基于混合设计的高性能钢梁抗弯性能及延性试验[J]. 中国公路学报, 2012, 25 (2): 81-89. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201202012.htm

    WANG Chun-sheng, DUAN Lan, WANG Ji-ming, et al. Bending behavior and ductility test of high performance steel beam based on hybrid design[J]. China Journal of Highway and Transport, 2012, 25 (2): 81-89. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201202012.htm
    [15] 段兰, 张亮, 王春生, 等. 高强度工字钢梁抗弯性能试验[J]. 长安大学学报: 自然科学版, 2012, 32 (6): 52-58. doi: 10.3969/j.issn.1671-8879.2012.06.009

    DUAN Lan, ZHANG Liang, WANG Chun-sheng, et al. Flexural behavior test of high strength steel I beam[J]. Journal of Chang & amp; amp; apos; an University: Natural Science Edition, 2012, 32 (6): 52-58. (in Chinese). doi: 10.3969/j.issn.1671-8879.2012.06.009
    [16] BAN H Y, BRADFORD M A. Flexural behaviour of composite beams with high strength steel[J]. Engineering Structures, 2013 (56): 1130-1141.
    [17] VELJKOVIC M, JOHANSSON B. Design of hybrid steel girders[J]. Journal of Constructional Steel Research, 2004, 60 (3/4/5): 535-547.
    [18] 娄廷会. 混合钢梁桥初步研究[J]. 公路工程, 2010, 35 (1): 37-41. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201001008.htm

    LOU Ting-hui. Preliminary study of hybrid steel girder bridges[J]. Highway Engineering, 2010, 35 (1): 37-41. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201001008.htm
  • 加载中
图(18) / 表(5)
计量
  • 文章访问数:  597
  • HTML全文浏览量:  179
  • PDF下载量:  656
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-20
  • 刊出日期:  2014-10-25

目录

    /

    返回文章
    返回