留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于磁流变阻尼器的铁道车辆模糊半主动控制

李忠继 戴焕云 曾京

李忠继, 戴焕云, 曾京. 基于磁流变阻尼器的铁道车辆模糊半主动控制[J]. 交通运输工程学报, 2014, 14(5): 43-50.
引用本文: 李忠继, 戴焕云, 曾京. 基于磁流变阻尼器的铁道车辆模糊半主动控制[J]. 交通运输工程学报, 2014, 14(5): 43-50.
LI Zhong-ji, DAI Huan-yun, CENG Jing. Fuzzy semi-active control of railway vehicle with magnetorheological dampers[J]. Journal of Traffic and Transportation Engineering, 2014, 14(5): 43-50.
Citation: LI Zhong-ji, DAI Huan-yun, CENG Jing. Fuzzy semi-active control of railway vehicle with magnetorheological dampers[J]. Journal of Traffic and Transportation Engineering, 2014, 14(5): 43-50.

基于磁流变阻尼器的铁道车辆模糊半主动控制

基金项目: 

国家973计划项目 2011CB711106

详细信息
    作者简介:

    李忠继(1983-), 男, 河北赤城人, 中国中铁二院工程集团有限责任公司工程师, 工学博士, 从事轨道与车辆系统结构和动力学研究

  • 中图分类号: U270.11

Fuzzy semi-active control of railway vehicle with magnetorheological dampers

More Information
    Author Bio:

    LI Zhong-ji(1983-), male, engineer, PhD, +86-28-86445021, lizhongji@live.com

  • 摘要: 研究了基于磁流变阻尼器的铁道车辆半主动悬挂系统的控制方法, 建立了50自由度的车辆多体动力学模型和磁流变阻尼器的Spencer模型。运用模糊控制方法设计了基于车体加速度和速度反馈的模糊控制器, 利用电压控制函数和滞回特性分离法建立了磁流变阻尼器的逆模型, 用于预测控制电流。采用数值仿真方法研究了基于磁流变阻尼器的模糊半主动悬挂系统的特性, 分析了装用半主动悬挂系统车辆的动力学性能。仿真结果表明: 采用基于逆模型的模糊控制方法, 阻尼器实际阻尼力能有效跟踪控制系统的期望阻尼力。相对于被动悬挂, 基于磁流变阻尼器的模糊半主动悬挂系统能够有效地减小车体1~10Hz范围内的振动, 改善车辆的运行平稳性。当车辆运行速度为250km·h-1时, 振动加速度减小53.3%。当车辆运行速度为100~300km·h-1时, 车辆运行平稳性指标改善率为6%9%。

     

  • 图  1  车辆系统模型

    Figure  1.  Vehicle system model

    图  2  磁流变阻尼器现象模型

    Figure  2.  Phenomenological model of MR damper

    图  3  速度-力特性

    Figure  3.  Velocity-force characteristics

    图  4  位移-力特性

    Figure  4.  Displacement-force characteristics

    图  5  速度-力特性对比

    Figure  5.  Comparison of velocity-force characteristics

    图  6  控制流程

    Figure  6.  Control flow

    图  7  仿真模型

    Figure  7.  Simulation model

    图  8  速度曲线

    Figure  8.  Velocity curve

    图  9  控制电压曲线

    Figure  9.  Control voltage curve

    图  10  阻尼力曲线

    Figure  10.  Damping force curves

    图  11  速度-阻尼力的散点

    Figure  11.  Velocity-damping force scatter points

    图  12  阻尼器动态响应对比

    Figure  12.  Comparison of MR damper dynamic responses

    图  13  车体横向加速度

    Figure  13.  Carbody lateral accelerations

    图  14  车体横向加速度功率谱密度

    Figure  14.  Carbody lateral acceleration FFTs

    图  15  车体运行平稳性

    Figure  15.  Riding performances of carbody

    表  1  磁流变阻尼器模型参数

    Table  1.   Parameters of MR damper model

    下载: 导出CSV

    表  2  模糊控制规则

    Table  2.   Fuzzy control rules

    下载: 导出CSV
  • [1] KARNOPP D, CROSBY M J, HARWOOD R A. Vibration control using semi-active force generators[J]. Journal of Manufacturing Science and Engineering, 1974, 96 (2): 619-626.
    [2] KARNOPP D. Active and semi-active vibration isolation[J]. Journal of Mechanical Design, 1995, 117 (B): 177-185. doi: 10.1115/1.2836452
    [3] 曾京, 戴焕云, 邬平波. 基于开关阻尼控制的铁道客车系统的动力学性能研究[J]. 中国铁道科学, 2004, 25 (6): 27-31. doi: 10.3321/j.issn:1001-4632.2004.06.005

    ZENG Jing, DAI Huan-yun, WU Ping-bo. Dynamics performance study of railway passenger car system based on on/off damping control[J]. China Railway Science, 2004, 25 (6): 27-31. (in Chinese). doi: 10.3321/j.issn:1001-4632.2004.06.005
    [4] 李忠继, 戴焕云, 田合强. 比例溢流阀式半主动悬挂系统仿真研究[J]. 中国铁道科学, 2012, 33 (3): 67-73. doi: 10.3969/j.issn.1001-4632.2012.03.11

    LI Zhong-ji, DAI Huan-yun, TIAN He-qiang. Simulation study on the semi-active suspension system with proportional relief valve[J]. China Railway Science, 2012, 33 (3): 67-73. (in Chinese). doi: 10.3969/j.issn.1001-4632.2012.03.11
    [5] SPENCER B F, DYKE S J, SAIN M K, et al. Phenomenological model of a magnetorheological dampers[J]. Journal of Engineering Mechanics, 1997, 123 (3): 230-238. doi: 10.1061/(ASCE)0733-9399(1997)123:3(230)
    [6] WANG En-rong, MA Xiao-qing, RAKHELA S, et al. Modelling the hysteretic characteristics of a magnetorheological fluid damper[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2003, 217 (7): 537-550. doi: 10.1243/095440703322114924
    [7] 王皖君, 应亮, 王恩荣. 可控磁流变阻尼器滞环模型的比较[J]. 机械工程学报, 2009, 45 (9): 100-108. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200909017.htm

    WANG Wan-jun, YING Liang, WANG En-rong. Comparison on hysteresis models of controllable magneto-rheological damper[J]. Journal of Mechanical Engineering, 2009, 45 (9): 100-108. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200909017.htm
    [8] LIAO W H, WANG D H. Neural network modeling and controllers for magnetorheological fluid dampers[C]//IEEE. The 10th IEEE International Conference on Fuzzy Systems. Melbourne: IEEE, 2001: 1323-1326.
    [9] LIAO W H, WANG D H. Semi-active suspension systems for railway vehicles using magnetorheological dampers. Part Ⅰ: system integration and modelling[J]. Vehicle System Dynamics, 2009, 47 (11): 1305-1325. doi: 10.1080/00423110802538328
    [10] LIAO W H, WANG D H. Semi-active suspension systems for railway vehicles using magnetorheological dampers. Part Ⅱ: simulation and analysis[J]. Vehicle System Dynamics, 2009, 47 (12): 1439-1471. doi: 10.1080/00423110802538336
    [11] SHEN Y, GOLNARAGHI M F, HEPPLER G R. Semi-active vibration control schemes for suspension systems using magnetorheological dampers[J]. Journal of Vibration and Control, 2006, 12 (1): 3-24. doi: 10.1177/1077546306059853
    [12] LIAO W H, WANG D H. Semi-active vibration control of train suspension systems via magnetorheological dampers[J]. Journal of Intelligent Material Systems and Structures, 2003, 14 (3): 161-172. doi: 10.1177/1045389X03014003004
    [13] YOKOYAMA M, HEDRICK J K, TOYAMA S. A model following sliding mode controller for semi-active suspension systems with MR dampers[C]//IEEE. Proceedings of American Control Conference. Arlington: IEEE, 2001: 2652-2657.
    [14] 陈杰平, 冯武堂, 郭万山, 等. 整车磁流变阻尼器半主动悬架变论域模糊控制策略[J]. 农业机械学报, 2011, 42 (5): 7-13, 19. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201105001.htm

    CHEN Jie-ping, FENG Wu-tang, GUO Wan-shan, et al. Vehicle magnetorheological fluid damper semi-active suspension variable universe fuzzy control simulation and test[J]. Transactions of the Chinese Society of Agricultural Machine, 2011, 42 (5): 7-13, 19. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201105001.htm
    [15] 刘宏友, 曾京, 李莉, 等. 高速列车二系横向阻尼连续可调式半主动悬挂系统的研究[J]. 中国铁道科学, 2012, 33 (4): 69-74. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201204015.htm

    LIU Hong-you, ZENG Jing, LI Li, et al. Study on secondary lateral continuous adjustable damping semi-active suspension device for high-speed train[J]. China Railway Science, 2012, 33 (4): 69-74. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201204015.htm
    [16] LI Zhong-ji, NI Yi-qing, DAI Huan-yun, et al. Viscoelastic plastic continuous physical model of a magnetorheological damper applied in the high speed train[J]. Science ChinaTechnological Sciences, 2013, 56 (10): 2433-2446.
    [17] ZONG Lu-hang, GONG Xing-long, GUO Chao-yang, et al. Inverse neuro-fuzzy MR damper model and its application in vibration control of vehicle suspension system[J]. Vehicle System Dynamics, 2012, 50 (7): 1025-1041.
    [18] ZONG Lu-hang, GONG Xing-long, XUAN Shou-hu, et al. Semi-active H∞control of high-speed railway vehicle suspension with magnetorheological dampers[J]. Vehicle System Dynamics, 2013, 51 (5): 600-626.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  726
  • HTML全文浏览量:  117
  • PDF下载量:  897
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-20
  • 刊出日期:  2014-10-25

目录

    /

    返回文章
    返回