留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

集装箱船舶全航线配载优化模型与改进遗传算法

祝慧灵 计明军

祝慧灵, 计明军. 集装箱船舶全航线配载优化模型与改进遗传算法[J]. 交通运输工程学报, 2014, 14(5): 59-67.
引用本文: 祝慧灵, 计明军. 集装箱船舶全航线配载优化模型与改进遗传算法[J]. 交通运输工程学报, 2014, 14(5): 59-67.
ZHU Hui-ling, JI Ming-jun. Optimal model and improved genetic algorithm of containership stowage on full route[J]. Journal of Traffic and Transportation Engineering, 2014, 14(5): 59-67.
Citation: ZHU Hui-ling, JI Ming-jun. Optimal model and improved genetic algorithm of containership stowage on full route[J]. Journal of Traffic and Transportation Engineering, 2014, 14(5): 59-67.

集装箱船舶全航线配载优化模型与改进遗传算法

基金项目: 

国家自然科学基金项目 71072081

详细信息
    作者简介:

    祝慧灵(1989-), 女, 江苏南通人, 大连海事大学工学博士研究生, 从事航运系统规划研究

    计明军(1973-), 男, 内蒙古赤峰人, 大连海事大学教授, 工学博士

  • 中图分类号: U695.2

Optimal model and improved genetic algorithm of containership stowage on full route

More Information
  • 摘要: 以集装箱船舶稳性、强度、载荷为约束条件, 以全航线倒箱量最小和吃水差最优为目标函数, 建立了集装箱船舶全航线多目标配载优化模型。利用启发式算法获得初始可行解, 利用改进了的遗传算法进行优化, 并用1 841TEU、3开口的集装箱船舶进行实例验证。计算结果表明: 与传统遗传算法相比, 改进的遗传算法能在1.967s内求得全航线上5个挂靠港口的配载计划, 并能求得5个港口的满意解; 在求得的满意解中, 船舶倒箱量均为0, 吃水差的绝对值分别为0.003 5、0.000 8、0.109 7、0.001 1、0.371 2m, 均在船舶行驶的合理范围0~0.5m内; 对于不同挂靠港数量的其他航线, 改进的遗传算法能在5s内快速获得合理的配载计划。可见, 优化模型与改进的遗传算法可行。

     

  • 图  1  港口与航线

    Figure  1.  Ports and routings

    图  2  货物流向

    Figure  2.  Freight flow direction

    图  3  贝位划分

    Figure  3.  Bay partition

    图  4  集装箱船贝位布置

    Figure  4.  Baytal layout of containership

    图  5  船舶贝位

    Figure  5.  Ship bays

    图  6  改进的遗传算法流程

    Figure  6.  Improved genetic algorithm flow

    图  7  配载优化结果

    Figure  7.  Stowage optimal results

    图  8  传统遗传算法与改进遗传算法优化结果比较

    Figure  8.  Comparison of optimal results for general GA and improved GA

    表  1  贝位容量

    Table  1.   Bay capacities

    下载: 导出CSV

    表  2  船舶参数

    Table  2.   Containership parameters

    下载: 导出CSV

    表  3  货运量

    Table  3.   Freight traffic volumes

    下载: 导出CSV

    表  4  初始解与满意解

    Table  4.   Initial and satisfactory solutions

    下载: 导出CSV

    表  5  不同工况下吃水差计算结果

    Table  5.   Calculation results of trim under different conditions

    下载: 导出CSV
  • [1] AVRIEL M, PENN M, SHPIRER N, et al. Stowage planning for container ships to reduce the number of shifts[J]. Annals of Operations Research, 1998, 76 (1): 55-71.
    [2] AVRIEL M, PENN M, SHPIRER N. Container ship stowage problem: complexity and connection to the coloring of circle graphs[J]. Discrete Applied Mathematics, 2000, 103 (1): 271-279.
    [3] WILSON I D, ROACH P A. Principles of combinatorial optimization applied to container-ship stowage planning[J]. Journal of Heuristics, 1999, 5 (4): 403-418. doi: 10.1023/A:1009680305670
    [4] WILSON I D, ROACH P A. Container stowage planning: a methodology for generating computerized solutions[J]. Journal of the Operational Research Society, 2000, 51 (11): 1248-1255. doi: 10.1057/palgrave.jors.2601022
    [5] WILSON I D, ROACH P A, WARE J A. Container stowage pre-planning: using search to generate solutions, a case study[J]. Knowledge-Based System, 2001, 14 (3): 137-145.
    [6] IMAI A, SASAKI K, NISHIMURA E, et al. Multi-objective simultaneous stowage and load planning for a container ship with container rehandle in yard stacks[J]. European Journal of Operational Research, 2006, 171 (2): 373-389. doi: 10.1016/j.ejor.2004.07.066
    [7] TIERNEY K, PACINO D, JENSEN R M. On the complexity of container stowage planning problems[J]. Discrete Applied Mathematics, 2014, 169 (2): 225-230.
    [8] DELGADO A, JENSEN R M, JANSREUP K, et al. A constraint programming model for fast optimal stowage of container vessel bays[J]. European Journal of Operational Research, 2012, 220 (1): 251-261. doi: 10.1016/j.ejor.2012.01.028
    [9] AMBROSINO D, SCIOMACHEN A, TANFANI E. Stowing a containership: the master bay plan problem[J]. Transportation Research Part A: Policy and Practice, 2004, 38 (2): 81-99. doi: 10.1016/j.tra.2003.09.002
    [10] AMBROSINO D, SCIOMACHEN A, TANFANI E. A decomposition heuristics for the container ship stowage problem[J]. Journal of Heuristics, 2006, 12 (3): 211-233. doi: 10.1007/s10732-006-5905-1
    [11] PACINO D, DELGADO A, JENSEN R M. Fast generation of near-optimal plans for eco-efficient stowage of large container vessels[C]//Springer. Proceedings of the Second International Conference on Computational Logistics. Berlin: Springer, 2011: 286-301.
    [12] JOHN A, YANG Zai-li, RIAHI R, et al. Application of a collaborative modelling and strategic fuzzy decision support system for selecting appropriate resilience strategies for seaport operations[J]. Journal of Traffic and Transportation Engineering: English Edition, 2014, 1 (3): 159-179. doi: 10.1016/S2095-7564(15)30101-X
    [13] SCIOMACHEN A, TANFANI E. A 3D-BPP approach for optimizing stowage plans and terminal productivity[J]. European Journal of Operational Research, 2007, 183 (3): 1433-1446. doi: 10.1016/j.ejor.2005.11.067
    [14] MONACO M F, SAMMARRA M, SORRENTINO G. The terminal-oriented ship stowage planning problem[J]. European Journal of Operational Research, 2014, 239 (1): 256-265. doi: 10.1016/j.ejor.2014.05.030
    [15] 孙晓雅, 林焰. 集装箱船多港Bay位排箱的优化方法[J]. 大连海事大学学报, 2011, 37 (1): 9-13. https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS201101020.htm

    SUN Xiao-ya, LIN Yan. Multi-port bay layout optimization method for container ships[J]. Journal of Dalian Maritime University, 2011, 37 (1): 9-13. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS201101020.htm
    [16] 曾庆成, 杨忠振, 陆靖. 集装箱码头同贝同步装卸调度模型与算法[J]. 交通运输工程学报, 2010, 10 (1): 88-93. doi: 10.3969/j.issn.1671-1637.2010.01.016

    ZENG Qing-cheng, YANG Zhong-zhen, LU Jing. Scheduling model and algorithm of integrating loading and unloading operations in same ship-bay at container terminal[J]. Journal of Traffic and Transportation Engineering, 2010, 10 (1): 88-93. (in Chinese). doi: 10.3969/j.issn.1671-1637.2010.01.016
    [17] DUBROVSKY O, LEVITIN G, PENN M. A genetic algorithm with a compact solution encoding for the container ship stowage problem[J]. Journal of Heuristics, 2002, 8 (6): 585-599. doi: 10.1023/A:1020373709350
    [18] 靳志宏, 兰辉, 郭贝贝. 基于现实约束的集装箱配载优化及可视化[J]. 系统工程理论与实践, 2010, 30 (9): 1722-1728. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201009028.htm

    JIN Zhi-hong, LAN Hui, GUO Bei-bei. Optimization and visualization of the container loading problems with realistic constraints[J]. Systems Engineering—Theory and Practice, 2010, 30 (9): 1722-1728. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201009028.htm
    [19] 孙俊清, 陈忱, 刘凤连. 考虑船舶稳定性的多港口集装箱配载问题[J]. 计算机工程与应用, 2012, 48 (32): 236-243. doi: 10.3778/j.issn.1002-8331.1104-0575

    SUN Jun-qing, CHEN Chen, LIU Feng-lian. On stowage planning for multi-port container transportation based on stability constraint[J]. Computer Engineering and Applications, 2012, 48 (32): 236-243. (in Chinese). doi: 10.3778/j.issn.1002-8331.1104-0575
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  820
  • HTML全文浏览量:  217
  • PDF下载量:  1043
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-07
  • 刊出日期:  2014-10-25

目录

    /

    返回文章
    返回