留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

性能基导航中飞行技术误差估计研究综述

赵鸿盛 徐肖豪 李锐 熊智勇 李冬宾

赵鸿盛, 徐肖豪, 李锐, 熊智勇, 李冬宾. 性能基导航中飞行技术误差估计研究综述[J]. 交通运输工程学报, 2014, 14(5): 101-110.
引用本文: 赵鸿盛, 徐肖豪, 李锐, 熊智勇, 李冬宾. 性能基导航中飞行技术误差估计研究综述[J]. 交通运输工程学报, 2014, 14(5): 101-110.
ZHAO Hong-sheng, XU Xiao-hao, LI Rui, XIONG Zhi-yong, LI Dong-bin. Overview of research on flight technical error estimation in performance based navigation[J]. Journal of Traffic and Transportation Engineering, 2014, 14(5): 101-110.
Citation: ZHAO Hong-sheng, XU Xiao-hao, LI Rui, XIONG Zhi-yong, LI Dong-bin. Overview of research on flight technical error estimation in performance based navigation[J]. Journal of Traffic and Transportation Engineering, 2014, 14(5): 101-110.

性能基导航中飞行技术误差估计研究综述

基金项目: 

国家自然科学基金项目 61039001

国家自然科学基金项目 U1233130

国家973计划项目 2010CB731800

详细信息
    作者简介:

    赵鸿盛(1982-), 男, 上海人, 中国航空无线电电子研究所工程师, 工学博士, 从事空中交通管理研究

  • 中图分类号: V355

Overview of research on flight technical error estimation in performance based navigation

More Information
  • 摘要: 从人为因素、飞行器性能与环境因素3方面剖析了性能基导航中飞行技术误差的影响因素及其特性。依据导航方式与特定运行条件分类论述了基于飞行试验的飞行技术误差试验统计研究, 指出了此类研究方法的局限性。评述了基于成型机理的飞行技术误差方差估计模型与方法, 讨论了各种方法的特点和应用范围。从飞行技术误差估计方法与应用2方面分析了现有研究的局限性与后续研究展望。分析结果表明: 在手动操作方式下, 不同的飞行策略对飞行技术误差有较大影响, 航径偏移指示器的灵敏度与侧向飞行技术误差负相关。在航路和终端区, 某些通用航空飞行器的侧向飞行技术误差的标准差分别高达759.32、481.52m, 主要原因是未安装高精度导航系统。对飞行试验结果进行统计拟合的估计方法无法全面地覆盖全部机型、航段与天气条件, 因而具有一定的局限性, 而基于成型机理的飞行技术误差估计方法估计的侧向、高度飞行技术误差的标准差分别为2.68、1.13m, 通过与仿真结果和实测数据的比较, 方法的有效性得到验证。性能基导航设备在实时估计飞行技术误差时, 采用假设常值而不进行实时估计, 将会使飞行器处于危险中。从多重因素入手研究如何减小性能基导航中飞行技术误差是未来的重要研究方向。

     

  • 图  1  侧向飞行技术误差

    Figure  1.  Lateral flight technical error

    图  2  飞行策略对飞行技术误差的影响

    Figure  2.  Impact of flight strategy on flight technical error

    表  1  不同运行模式下飞行技术误差标准差

    Table  1.   Standard deviations of FTE under different operation modes

    下载: 导出CSV
  • [1] DOC9613, international civil aviation organization, performance based navigation (PBN) manual[S].
    [2] 中国民用航空局. 中国民航基于性能的导航实施路线图[R]. 北京: 中国民用航空局, 2009. Civil Aviation Administration of China. China civil aviation performance based navigation implementation roadmap[R]. Beijing: Civil Aviation Administration of China, 2009. (in Chinese).
    [3] MCRUER D T, HOFMANN L G, TEX H R, et al. New approaches to human-pilot/vehicle dynamic analysis[R]. Alexandria: NTIS, 1968.
    [4] RICHARDSON D W. Determination of the impact of digital data broadcast on flight technical error[R]. Alexandria: NTIS, 1980.
    [5] HAYASHI M. Hidden Markov models to identify pilot instrument scanning and attention patterns[C]//IEEE. 2003IEEE International Conference on Systems, Man, and Cybernetics. Manchester: IEEE, 2003: 2889-2896.
    [6] MCRUER D T, KRENDEL E S. The human operator as a servo system element[J]. Journal of the Franklin Institution, 1959, 267 (5): 381-403. doi: 10.1016/0016-0032(59)90091-2
    [7] MCRUER D T. Human dynamics in man-machine systems[J]. Automatica, 1980, 16 (3): 237-253. doi: 10.1016/0005-1098(80)90034-5
    [8] MCRUER D T, MAGDALENO R E. Human pilot dynamics with various manipulators[R]. Alexandria: NTIS, 1966.
    [9] BEKEY G A. The human operator as a sampled-data system[J]. IEEE Transactions on Human Factors in Electronics, 1962, 3 (2): 43-51.
    [10] MCRUER D T, JEX H R. A review of quasi-linear pilot models[J]. IEEE Transactions on Human Factors in Electronics, 1967, 8 (3): 231-249.
    [11] RASMUSSEN J. Skills, rules, and knowledge; signals, signs, and symbols, and other distinctions in human performance models[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1983, 13 (3): 257-266.
    [12] KLEINMAN D L, BARON S, LEVISON W H. An optimal control model of human response, part Ⅰ: theory and validation[J]. Automatica, 1970, 6 (3): 357-369. doi: 10.1016/0005-1098(70)90051-8
    [13] BARON S, KLEINMAN D L, LEVISON W H. An optimal control model of human response, part Ⅱ: prediction of human performance in a complex task[J]. Automatica, 1970, 6 (3): 371-383. doi: 10.1016/0005-1098(70)90052-X
    [14] STAPLEFORD R L, MCRUER D T, MAGDALENO R E. Pilot describing function measurements in a multiloop task[J]. IEEE Transactions on Human Factors in Electronics, 1967, 8 (2): 113-125.
    [15] KLEINMAN D L. Optimal control of linear systems with time-delay and observation noise[J]. IEEE Transactions on Automatic Control, 1969, 14 (5): 524-527. doi: 10.1109/TAC.1969.1099242
    [16] LEVISON W H, BARON S, KLEINMAN D L. A model for human controller remnant[J]. IEEE Transactions on ManMachine Systems, 1969, 10 (4): 101-108. doi: 10.1109/TMMS.1969.299906
    [17] THOMPSON P, MCRUER D. Comparison of the human optimal control and crossover models[C]//AIAA. Proceedings of AIAA Guidance, Navigation, and Control Conference. Minneapolis: AIAA, 1988: 1083-1090.
    [18] DIAMANTIDES N D. A pilot analog for airplane pitch control[J]. Journal of the Aerospace Sciences, 1958, 25 (6): 361-370. doi: 10.2514/8.7687
    [19] MAGDALENO R E, MCRUER D T. Experimental validation and analytical elaboration for models of the pilot & amp; amp; apos; s neuromuscular sub-system in tracking tasks[R]. Hawthorne: NASA, 1971.
    [20] WIERWILLE W W. A theory for optimal deterministic characterization of time-varying human operator dynamics[J]. IEEE Transactions on Human Factors in Electronics, 1965, 6 (1): 53-61.
    [21] MCDONNELL J D, JEX H R. A critical tracking task for man-machine research related to the operator & amp; amp; apos; s effective delay time. II. experimental effects of system input spectra, control stick stiffness, and controlled element order[R]. Washington DC: NASA, 1967.
    [22] BARON S, ELKIND J I, KLEINMAN D L, et al. Application of optimal control theory to the prediction of human performance in a complex task[R]. Cambridge: Bolt Beranek and Newman Inc., 1970.
    [23] COSTELLO R G, HIGGINS T J. An inclusive classified bibliography pertaining to modeling the human operator as an element in an automatic control system[J]. IEEE Transactions on Human Factors in Electronics, 1966, 7 (4): 174-181.
    [24] HALL T, SOARES M. Analysis of localizer and glide slope flight technical error[C]//IEEE. Proceedings of the 27th Digital Avionics Systems Conference. Saint Paul: IEEE, 2008: 1-9.
    [25] WILLIAMS D M, CONSIGLIO M C, MURDOCH J L, et al. Flight technical error analysis of the SATS higher volume operations simulation and flight experiments[C]//IEEE. Proceedings of the 24th Digital Avionics Systems Conference. Arlington: IEEE, 2005: 1-12.
    [26] SCHNELL T, ETHERINGTON T, VOGL T, et al. Field evaluation of a synthetic vision information system onboard the NASA aries 757at Eagle County Regional Airport[C]//IEEE. Proceedings of the 21st Digital Avionics Systems Conference. Irivne: IEEE, 2002: 1-12.
    [27] LEVY B S, SOM P, GREENHAW R. Analysis of flight technical error on straight, final approach segments[C]//ION. Proceedings of the ION 59th Annual Meeting. Albuquerque: ION, 2003: 456-467.
    [28] ZHAO Hong-sheng, XU Xiao-hao, ZHANG Jun, et al. Lateral flight technical error model for performance based navigation[J]. Chinese Journal of Aeronautics, 2011, 24 (3): 329-336. doi: 10.1016/S1000-9361(11)60039-3
    [29] ZHAO Hong-sheng, XU Xiao-hao, ZHANG Jun, et al. Model of flight technical error in symmetrical plane for performance based navigation[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2010, 28 (3): 246-254.
    [30] ZHAO Hong-sheng, XU Xiao-hao, ZHANG Jun, et al. Extended estimation method for lateral flight technical error of perturbed system in performance based navigation[J]. Aerospace Science and Technology, 2013, 30 (10): 278-285.
    [31] 赵鸿盛. PBN导航中飞行技术误差的估计模型与方法研究[D]. 北京: 北京航空航天大学, 2012.

    ZHAO Hong-sheng. Estimation models and methods of the flight technical error in performance based navigation[D]. Beijing: Beihang University, 2012. (in Chinese).
    [32] SHOMBER H R. RNP capability of FMC equipped 737, generation 3[R]. Chicago: Boeing Company, 2002.
    [33] MCRUER D T, GRAHAM D, KRENDEL E S, et al. Human pilot dynamics in compensatory systems: theory, models, and experiments with controlled element and forcing function variations[R]. Alexandria: NTIS, 1965.
    [34] MCRUER D T, KRENDEL E S. The man-machine system concept[C]//IEEE. Proceedings of IRE. New York: IEEE, 1962: 1117-1123.
    [35] MCDONNEL J D. A preliminary study of human operator behavior following a step change in the controlled element[J]. IEEE Transactions on Human Factors in Electronics, 1966, 7 (3): 125-128.
    [36] LOOYE G H, BENNANI S. Design of a flight controller for the research civil aircraft model (RCAM) using mu-synthesis[R]. Alexandria: NTIS, 1996.
    [37] 徐肖豪, 赵鸿盛, 王振宇. 尾流间隔缩减技术综述[J]. 航空学报, 2010, 31 (4): 655-662. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201004002.htm

    XU Xiao-hao, ZHAO Hong-sheng, WANG Zhen-yu. Overview of wake vortex separation reduction systems[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31 (4): 655-662. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201004002.htm
    [38] HESS R A. Analyzing manipulator and feel system effects in aircraft flight control[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1990, 20 (4): 923-931. doi: 10.1109/21.105091
    [39] HESS R A. Analysis of aircraft attitude control systems prone to pilot-induced oscillations[J]. Journal of Guidance, Control, and Dynamics, 1984, 7 (1): 106-112. doi: 10.2514/3.56363
    [40] HESS R A. Prediction of pilot opinion ratings using an optimal pilot model[J]. Human Factors, 1977, 19 (5): 459-476. doi: 10.1177/001872087701900503
    [41] MCRUER D T, KRENDEL E S. Dynamic response of human operators[R]. Cambridge: Massachusetts Institute of Technology, 1957.
    [42] KRENDEL E S, MCRUER D T. A servomechanisms approach to skill development[J]. Journal of the Franklin Institute, 1960, 269 (1): 24-42. doi: 10.1016/0016-0032(60)90245-3
    [43] HUNTLEY M S, TURNER J W, PALMER R. Flight technical error for category B non-precision approaches and missed approaches using non-differential GPS for course guidance[R]. Washington DC: Federal Aviation Administration, 1993.
    [44] ANDERSON M R. A flight technical error model for nonstationary random turbulence[C]//AIAA. Proceedings of AIAA Guidance, Navigation, and Control Conference. Montreal: AIAA, 2001: 1-8.
    [45] 赵鸿盛. 空中交通中的尾流大涡数值模拟及消散预测算法研究[D]. 天津: 中国民航大学, 2008.

    ZHAO Hong-sheng. Large eddy simulation and dissipation prediction algorithm research of wake vortex of air traffic[D]. Tianjin: Civil Aviation University of China, 2008. (in Chinese).
    [46] 赵鸿盛, 徐肖豪. 一种尾流消散动态预测的改进算法[J]. 中国民航大学学报, 2008, 26 (1): 4-7. doi: 10.3969/j.issn.1001-5590.2008.01.002

    ZHAO Hong-sheng, XU Xiao-hao. Improved algorithm of dynamic prediction of wake vortex dissipation[J]. Journal of Civil Aviation University of China, 2008, 26 (1): 4-7. (in Chinese). doi: 10.3969/j.issn.1001-5590.2008.01.002
    [47] 徐肖豪, 赵鸿盛, 杨传森, 等. 飞行进近中尾流的大涡数值模拟[J]. 南京航空航天大学学报, 2010, 42 (2): 179-184. doi: 10.3969/j.issn.1005-2615.2010.02.010

    XU Xiao-hao, ZHAO Hong-sheng, YANG Chuan-sen, et al. Large eddy simulation of wake vortex during approach[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2010, 42 (2): 179-184. (in Chinese). doi: 10.3969/j.issn.1005-2615.2010.02.010
    [48] ADAMS R J. An operational evaluation of flight technical error[R]. Alexandria: NTIS, 1975.
    [49] ADAMS R J. Avionics certification requirements and procedures: error budgets for VOR/DME-RNAV, Loran-C, Omega and GPS including flight technical error[R]. Alexandria: NTIS, 1981.
    [50] ELDREDGE D, CROOK W G, CRIMBRING W R. Simulation tests of flight technical error in 2D/3D area navigation (RNAV) using a multiple waypoint RNAV system with and without a flight director system[R]. Alexandria: NTIS, 1977.
    [51] DONG Bing, LUO Xiao-li. Analysis of assessment method about the flight technical error based on Johnson curves[J]. Procedia Engineering, 2011, 17: 84-89. doi: 10.1016/j.proeng.2011.10.011
    [52] FUJII N. A concept of CAT III GBAS requirement based on real-time flight technical error estimation[C]//ION. ION GNSS 20th International Technical Meeting of the Satellite Division. Fort Worth: ION, 2007: 453-460.
    [53] GARG S, OUZTS P J. Integrated flight propulsion control design for a STOVL aircraft using H-infinity control design techniques[C]//IEEE. The 1999American Control Conference. Boston: IEEE, 1999: 568-576.
    [54] BRAUN J F, MORTON W W, PECKHAM C G. Flight technical error of general aviation aircraft (statistical analysis of random errors from intended flight altitude of private aviation aircraft operating under visual and instrument flight rules)[R]. Alexandria: NTIS, 1981.
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  644
  • HTML全文浏览量:  122
  • PDF下载量:  1159
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-07
  • 刊出日期:  2014-10-25

目录

    /

    返回文章
    返回