留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于方向可变Haar特征和双曲线模型的车道线检测方法

王海 蔡英凤 林国余 张为公

王海, 蔡英凤, 林国余, 张为公. 基于方向可变Haar特征和双曲线模型的车道线检测方法[J]. 交通运输工程学报, 2014, 14(5): 119-126.
引用本文: 王海, 蔡英凤, 林国余, 张为公. 基于方向可变Haar特征和双曲线模型的车道线检测方法[J]. 交通运输工程学报, 2014, 14(5): 119-126.
WANG Hai, CAI Ying-feng, LIN Guo-yu, ZHANG Wei-gong. Lane line detection method based on orientation variance Haar feature and hyperbolic model[J]. Journal of Traffic and Transportation Engineering, 2014, 14(5): 119-126.
Citation: WANG Hai, CAI Ying-feng, LIN Guo-yu, ZHANG Wei-gong. Lane line detection method based on orientation variance Haar feature and hyperbolic model[J]. Journal of Traffic and Transportation Engineering, 2014, 14(5): 119-126.

基于方向可变Haar特征和双曲线模型的车道线检测方法

基金项目: 

“十一五”国家科技支撑计划项目 2009BAG13A04

交通运输部信息化技术研究项目 2013 364 836 900

江苏大学高级专业人才科研启动基金项目 12JDG010

详细信息
    作者简介:

    王海(1983-), 男, 江苏镇江人, 江苏大学讲师, 工学博士, 从事基于视觉的智能车道路环境感知研究

  • 中图分类号: U491.223

Lane line detection method based on orientation variance Haar feature and hyperbolic model

More Information
  • 摘要: 针对快速路车道线易受多种因素影响而较难检测的问题, 提出了一种基于方向可变Haar特征和双曲线模型的分布式车道线检测方法。首先对车载摄像头进行标定, 确定图像中车道平面消失线的位置, 将车道平面消失线以下部分的下2/3区域作为感兴趣区域Ⅰ。利用边缘分布函数获得感兴趣区域Ⅰ内车道线直线模型倾角, 再采用方向可变Haar特征提取边缘特征点并拟合车道线直线模型, 利用直线模型参数进一步确定感兴趣区域Ⅱ。提出一种单方向搜索算法, 提取边缘特征点并利用双曲线模型拟合获取完整的车道线模型。通过约10 000幅实际道路图片对车道线检测方法进行验证。验证结果表明: 检测方法能很好地实现多种环境下的车道线检测, 在晴好天气检测率为99.9%, 不良天气检测率为99.7%。

     

  • 图  1  感兴趣区域Ⅰ

    Figure  1.  Region of interestⅠ

    图  2  方向可变Haar特征

    Figure  2.  Orientation variance Haar feature

    图  3  边缘分布函数

    Figure  3.  Edge distribution function

    图  4  车道边缘线特征点

    Figure  4.  Feature points of lane edge lines

    图  5  ROI-Ⅰ车道边缘检测线

    Figure  5.  Detection lines of lane edge in ROI-Ⅰ

    图  6  感兴趣区Ⅱ

    Figure  6.  Region of interestⅡ

    图  7  边缘提取结果

    Figure  7.  Edge extraction result

    图  8  筛选效果

    Figure  8.  Screening result

    图  9  ROI-Ⅱ内侧边缘特征点

    Figure  9.  Feature points of inner edge in ROI-Ⅱ

    图  10  双曲线模型统计

    Figure  10.  Statistics of hyperbolic model

    图  11  ROI-Ⅱ车道边缘检测线

    Figure  11.  Detection lines of lane edge in ROI-Ⅱ

    图  12  多种路况下的车道线检测结果

    Figure  12.  Lane line detection result under multiple road conditions

    表  1  晴好天气测试结果

    Table  1.   Test results of good weather

    下载: 导出CSV

    表  2  不良天气测试结果

    Table  2.   Test results of bad weather

    下载: 导出CSV
  • [1] BARICKMAN F S, SMITH L, JONES R. Lane departure warning system research and test development[C]//ESV. Proceedings of the 20th International Technical Conference on the Enhanced Safety of Vehicles. Lyon: ESV, 2007: 1-8.
    [2] JUNG H, MIN J, KIM J. An efficient lane detection algorithm for lane departure detection[C]//IEEE. 2013IEEE Intelligent Vehicles Symposium. Gold Coast: IEEE, 2013: 976-981.
    [3] MEI T, LIANG H, KONG B, et al. Development of'Intelligent Pioneer'unmanned vehicle[C]//IEEE. 2012IEEE Intelligent Vehicles Symposium. Madrid: IEEE, 2012: 938-943.
    [4] MASTORAKIS G, DAVIES E R. Improved line detection algorithm for locating road lane markings[J]. Electronics Letters, 2011, 47 (3): 183-184. doi: 10.1049/el.2010.2178
    [5] MCCALL J C, TRIVEDI M M. Video-based lane estimation and tracking for driver assistance: survey, system, and evaluation[J]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7 (1): 20-37. doi: 10.1109/TITS.2006.869595
    [6] CHENG H Y, JENG B S, TSENG P T, et al. Lane detection with moving vehicles in the traffic scenes[J]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7 (4): 571-582. doi: 10.1109/TITS.2006.883940
    [7] SOUTHALL B, BANSAL M, ELEDATH J. Real-time vehicle detection for highway driving[C]//IEEE. 2009IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Miami: IEEE, 2009: 541-548.
    [8] GOPALAN R, HONG T, SHNEIER M, et al. A learning approach towards detection and tracking of lane markings[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13 (3): 1088-1098. doi: 10.1109/TITS.2012.2184756
    [9] LEE J W, CHO J S. Effective lane detection and tracking method using statistical modeling of color and lane edge-orientation[C]//IEEE. The 2009Fourth International Conference on Computer Sciences and Convergence Information Technology. Seoul: IEEE, 2009: 1586-1591.
    [10] LI Hao, NASHASHIBI F. Robust real-time lane detection based on lane mark segment features and general a priori knowledge[C]//IEEE. Proceeding of the 2011IEEE International Conference on Robotics and Biomimetics. Phuket: IEEE, 2011: 812-817.
    [11] 高德芝, 段建民, 杨磊, 等. 应用多阶动态规划的车道线识别方法[J]. 机械工程学报, 2011, 47 (8): 141-145. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201108025.htm

    GAO De-zhi, DUAN Jian-min, YANG Lei, et al. Lane recognition method using multi-stage dynamic programming[J]. Journal of Mechanical Engineering, 2011, 47 (8): 141-145. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201108025.htm
    [12] 林国余, 陈旭, 张为公. 基于多信息融合优化的鲁棒性车道检测算法[J]. 东南大学学报: 自然科学版, 2010, 40 (4): 771-777. doi: 10.3969/j.issn.1001-0505.2010.04.021

    LIN Guo-yu, CHEN Xu, ZHANG Wei-gong. Robust lane detection algorithm based on multiple information fusion and optimizations[J]. Journal of Southeast University: Natural Science Edition, 2010, 40 (4): 771-777. (in Chinese). doi: 10.3969/j.issn.1001-0505.2010.04.021
    [13] 陈勇, 黄席樾, 唐高友, 等. 基于机器视觉的车道检测与二维重建方法[J]. 仪器仪表学报, 2007, 28 (7): 1205-1210. doi: 10.3321/j.issn:0254-3087.2007.07.010

    CHEN Yong, HUANG Xi-yue, TANG Gao-you, et al. Lane detection and two dimensional rebuilding based on machine vision[J]. Chinese Journal of Scientific Instrument, 2007, 28 (7): 1205-1210. (in Chinese). doi: 10.3321/j.issn:0254-3087.2007.07.010
    [14] ZHANG Fei-hu, STAHLE H, CHEN Chao, et al. A lane marking extraction approach based on random finite set statistics[C]//IEEE. 2013IEEE Intelligent Vehicles Symposium. Gold Coast: IEEE, 2013: 1143-1148.
    [15] ZHANG Z. A flexible camera calibration by viewing aplane from unknown orientations[C]//IEEE. 1999IEEE International Conference on Computer Vision. Kerkyra: IEEE, 1999: 666-673.
    [16] KLUGE K. Extracting road curvature and orientation from image edge points without perceptual grouping into features[C]//IEEE. 1994IEEE Intelligent Vehicles Symposium. Paris: IEEE, 1994: 109-114.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  542
  • HTML全文浏览量:  134
  • PDF下载量:  1376
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-29
  • 刊出日期:  2014-10-25

目录

    /

    返回文章
    返回