留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

BFRP加固损伤混凝土梁挠度计算方法

秦丽辉 李岩 王宗林 AL-DULAIMIA F N

秦丽辉, 李岩, 王宗林, AL-DULAIMIA F N. BFRP加固损伤混凝土梁挠度计算方法[J]. 交通运输工程学报, 2014, 14(6): 17-26.
引用本文: 秦丽辉, 李岩, 王宗林, AL-DULAIMIA F N. BFRP加固损伤混凝土梁挠度计算方法[J]. 交通运输工程学报, 2014, 14(6): 17-26.
QIN Li-hui, LI Yan, WANG Zong-lin, AL-DULAIMI A F N. Deflection calculating method of damaged concrete beams strengthened with BFRP[J]. Journal of Traffic and Transportation Engineering, 2014, 14(6): 17-26.
Citation: QIN Li-hui, LI Yan, WANG Zong-lin, AL-DULAIMI A F N. Deflection calculating method of damaged concrete beams strengthened with BFRP[J]. Journal of Traffic and Transportation Engineering, 2014, 14(6): 17-26.

BFRP加固损伤混凝土梁挠度计算方法

基金项目: 

国家自然科学基金项目 51108132

详细信息
    作者简介:

    秦丽辉(1977-), 女, 吉林舒兰人, 东北农业大学讲师, 工学博士, 从事桥梁加固研究

  • 中图分类号: U441.3

Deflection calculating method of damaged concrete beams strengthened with BFRP

More Information
    Author Bio:

    QIN Li-hui (1977-), female, lecturer, PhD, +86-451-55191534, qinlh1977@126.com

  • 摘要: 为了准确计算玄武岩纤维增强复合材料(BFRP) 加固损伤混凝土梁的挠度, 为BFRP加固损伤混凝土梁的设计与施工提供理论依据, 按照配筋率不同设计了11片试验梁进行试验, 每组试验梁设置不同的BFRP布加固量与加载方法。计算了各试验梁的荷载-挠度曲线, 分析了未加固梁、1层BFRP布加固梁、2层BFRP布加固梁在不同初始荷载下的挠度变化规律。给出了BFRP加固损伤混凝土梁跨中挠度的计算公式, 对比了挠度计算值与实测值。分析结果表明: BFRP加固混凝土梁的挠度受初始荷载和加固量的影响, 有初始荷载的加固梁挠度较无初始荷载的加固梁挠度增大30%~4%, 2层BFRP布加固梁的挠度较1层加固梁的挠度增大19%~2%, 计算挠度时需考虑BFRP布滞后应变的影响; 挠度计算值与实测值的最大差值平均为7.26 mm, 初始荷载小与配筋率高的试验梁挠度计算值与实测值较为接近, 可以用于实际工程计算。

     

  • 图  1  试验梁配筋

    Figure  1.  Reinforcement of test beam

    图  2  试验梁BFRP加固

    Figure  2.  Test beams strengthened with BFRP

    图  3  加载装置与应变测点布置

    Figure  3.  Loading device and layout of strain test points

    图  4  未加固梁荷载-挠度曲线

    Figure  4.  Load-deflection curves of un-strengthened beams

    图  5  加固无损伤梁荷载-挠度曲线

    Figure  5.  Load-deflection curves of strengthened nondestructive beams

    图  6  梁A2-2与B2-2的荷载-挠度曲线

    Figure  6.  Load-deflection curves of A2-2 and B2-2 beams

    图  7  梁A1-1与A1-2的荷载-挠度曲线

    Figure  7.  Load-deflection curves of A1-1 and A1-2 beams

    图  8  梁A2-1、A2-2的荷载-挠度曲线

    Figure  8.  Load-deflection curves of A2-1 and A2-2 beams

    图  9  梁B2-2、B2-3的荷载-挠度曲线

    Figure  9.  Load-deflection curves of B2-2 and B2-3 beams

    图  10  试验梁最大挠度对比

    Figure  10.  Comparison of maximum deflections of test beams

    图  11  应力-应变关系

    Figure  11.  Relationships between stress and strain

    图  12  挠度计算值与实测值的对比

    Figure  12.  Comparison of calculated and measured deflections

    表  1  试验梁参数

    Table  1.   Parameters of test beams

    下载: 导出CSV

    表  2  试验梁加载方法

    Table  2.   Loading methods of test beams

    下载: 导出CSV
  • [1] 李春霞. CFRP加固负载混凝土梁抗弯承载力及可靠度研究[D]. 武汉: 武汉理工大学, 2012.

    LI Chun-xia. Flexural bearing and reliability of loaded concrete beams strengthened with CFRP[D]. Wuhan: Wuhan University of Technology, 2012. (in Chinese).
    [2] CHOI W C, YUN H D. Long-term deflection and flexural behavior of reinforced concrete beams with recycled aggregate[J]. Materials and Design, 2013, 51 (5): 742-750. https://www.sciencedirect.com/science/article/pii/S0261306913003671
    [3] CHA P, CARBON K. An efficient approach to approximate the deflection curve of an arbitrarily supported beam subjectto external loads[J]. International Journal of Mechanical Engineering Education, 2013, 41 (2): 146-168. doi: 10.7227/IJMEE.41.2.7
    [4] MOHAMMADHASSANI M, NEZAMABADI-POUR H, JUMAAT M Z, et al. Application of artificial neural networks (ANNs) and linear regressions (LR) to predict the deflection of concrete deep beams[J]. Computers and Concrete, 2013, 11 (3): 237-252. doi: 10.12989/cac.2013.11.3.237
    [5] MOHAMMADHASSANI M, NEZAMABADI-POUR H, JUMAAT M Z, et al. Application of the ANFIS model in deflection prediction of concrete deep beam[J]. Structural Engineering and Mechanics, 2013, 45 (3): 319-332.
    [6] GRIBNIAK V, CERVENKA V, KAKLAUSKAS G. Deflection prediction of reinforced concrete beams by design codes and computer simulation[J]. Engineering Structures, 2013, 56 (11): 2175-2186. https://www.sciencedirect.com/science/article/pii/S0141029613004124
    [7] CASTEL A, FRANÇOIS R. Calculation of the overall stiffness and irreversible deflection of cracked reinforced concrete beams[J]. Advances in Structural Engineering, 2013, 16 (12): 2035-2042. doi: 10.1260/1369-4332.16.12.2035
    [8] MARAÍ R, OLLER E, BAIRÁN J M, et al. Simplified method for the calculation of long-term deflections in FRPstrengthened reinforced concrete beams[J]. Composites Part B: Engineering, 2013, 45 (1): 1368-1376. doi: 10.1016/j.compositesb.2012.07.003
    [9] RAFI M M, NADJAI A. A suggested model for European code to calculate deflection of FRP reinforced concrete beams[J]. Magazine of Concrete Research, 2011, 63 (3): 197-214. doi: 10.1680/macr.9.00085
    [10] MIÀS C, TORRES L, TURON A, et al. Effect of material properties on long-term deflections of GFRP reinforced concrete beams[J]. Construction and Building Materials, 2013, 41 (4): 99-108. https://www.sciencedirect.com/science/article/pii/S0950061812008914
    [11] MIÀS C, TORRES L, TURON A, et al. Experimental study of immediate and time-dependent deflections of GFRP reinforced concrete beams[J]. Composite Structures, 2013, 96 (2): 279-285. https://dugi-doc.udg.edu/handle/10256/11963
    [12] KARA I F, DUNDAR C. Prediction of deflection of high strength steel fiber reinforced concrete beams and columns[J]. Computers and Concrete, 2012, 9 (2): 133-151. doi: 10.12989/cac.2012.9.2.133
    [13] MOHAMED H M, MASMOUDI R. Deflection prediction of steel and FRP-reinforced concrete-filled FRP tube beams[J]. Journal of Composites for Construction, 2011, 15 (3): 462-472. doi: 10.1061/(ASCE)CC.1943-5614.0000172
    [14] 高丹盈, 张明. 基于有效惯性矩的钢纤维高强混凝土梁刚度计算方法[J]. 中国公路学报, 2013, 26 (5): 62-68, 139. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201305013.htm

    GAO Dan-ying, ZHANG Ming. Calculation method for stiffness of steel fiber reinforced high-strength concrete beams based on effective moment of inertia[J]. China Journal of Highway and Transport, 2013, 26 (5): 62-68, 139. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201305013.htm
    [15] 余琼, 张燕语. 预应力碳纤维布加固钢筋混凝土梁挠度研究[J]. 结构工程师, 2011, 27 (1): 139-143. https://www.cnki.com.cn/Article/CJFDTOTAL-JGGC201101024.htm

    YU Qiong, ZHANG Yan-yu. Study on deflection of RC beams strengthened with prestressed CFRP[J]. Structural Engineers, 2011, 27 (1): 139-143. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGGC201101024.htm
    [16] 唐义军. 碳纤维布加固RC梁后的荷载-挠度全曲线的简化计算[J]. 四川建筑科学研究, 2012, 38 (3): 109-111. https://www.cnki.com.cn/Article/CJFDTOTAL-ACZJ201203027.htm

    TANG Yi-jun. The simplification computation of entire loaddeflection curve of reinforced concrete beams strengthened with carbon fiber sheet[J]. Sichuan Building Science, 2012, 38 (3): 109-111. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ACZJ201203027.htm
    [17] 王文炜, 赵国藩. 玻璃纤维布加固的钢筋混凝土梁挠度计算[J]. 四川建筑科学研究, 2004, 30 (3): 33-36. https://www.cnki.com.cn/Article/CJFDTOTAL-ACZJ200403012.htm

    WANG Wen-wei, ZHAO Guo-fan. Calculation of deflection of RC beams strengthened with GFRP sheets[J]. Sichuan Building Science, 2004, 30 (3): 33-36. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ACZJ200403012.htm
    [18] 李春红, 魏德敏, 郑愚. GFRP筋混凝土板在拱效应下的挠度计算[J]. 江苏大学学报: 自然科学版, 2012, 33 (4): 474-479. doi: 10.3969/j.issn.1671-7775.2012.04.020

    LI Chun-hong, WEI De-min, ZHENG Yu. Deflection estimation of concrete slab reinforced with GFRP bars with consideration of arching action[J]. Journal of Jiangsu University: Natural Science Edition, 2012, 33 (4): 474-479. (in Chinese). doi: 10.3969/j.issn.1671-7775.2012.04.020
    [19] 张岩, 段树金, 郑岗. 考虑混凝土损伤的双面组合连续梁挠度和裂缝宽度研究[J]. 石家庄铁道大学学报: 自然科学版, 2011, 24 (3): 24-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SJZT201103005.htm

    ZHANG Yan, DUAN Shu-jin, ZHENG Gang. Study on deflection and crack width of double composite continuous beam considering concrete damge[J]. Journal of Shijiazhuang Tiedao University: Natural Science, 2011, 24 (3): 24-28. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SJZT201103005.htm
    [20] 周勇军, 蔡军哲, 石雄伟, 等. 基于加权法的桥梁冲击系数计算方法[J]. 交通运输工程学报, 2013, 13 (4): 29-36. http://transport.chd.edu.cn/article/id/201304005

    ZHOU Yong-jun, CAI Jun-zhe, SHI Xiong-wei, et al. Computing method of bridge impact factor based on weighted method[J]. Journal of Traffic and Transportation Engineering, 2013, 13 (4): 29-36. (in Chinese). http://transport.chd.edu.cn/article/id/201304005
    [21] 徐荣桥, 陈德权. 组合梁挠度计算的改进折减刚度法[J]. 工程力学, 2013, 30 (2): 285-291. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201302041.htm

    XU Rong-qiao, CHEN De-quan. Modified reduced stiffness method for calculating the deflection of composite beams[J]. Engineering Mechanics, 2013, 30 (2): 285-291. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201302041.htm
    [22] 江南, 沈锐利. 矢跨比对悬索桥结构刚度的影响[J]. 土木工程学报, 2013, 46 (7): 90-97. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201307014.htm

    JIANG Nan, SHEN Rui-li. Influence of rise-span ratio on structural stiffness of suspension bridge[J]. China Civil Engineering Journal, 2013, 46 (7): 90-97. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201307014.htm
    [23] 张元海, 林丽霞, 刘勇. 剪力滞效应对箱形梁挠度影响的研究[J]. 计算力学学报, 2012, 29 (4): 625-630. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201204026.htm

    ZHANG Yuan-hai, LIN Li-xia, LIU Yong. Influence of shear lag effect on deflection of box girder[J]. Chinese Journal of Computational Mechanics, 2012, 29 (4): 625-630. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201204026.htm
    [24] 杜进生, 区达光. UPPC梁的开裂截面惯性矩及挠度计算研究[J]. 工程力学, 2014, 31 (2): 170-176. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201402025.htm

    DU Jin-sheng, AU F T K. Moment of inertia of cracked sections and deflections for UPPC beams[J]. Engineering Mechanics, 2014, 31 (2): 170-176. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201402025.htm
    [25] 孟刚, 贾金青, 王吉忠. 预应力超高强混凝土简支梁抗弯性能分析[J]. 哈尔滨工程大学学报, 2013, 34 (5): 575-580. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201305008.htm

    MENG Gang, JIA Jin-qing, WANG Ji-zhong. Study on flexural behavior of prestressed ultra-high strength concrete beams[J]. Journal of Harbin Engineering University, 2013, 34 (5): 575-580. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201305008.htm
    [26] 丁敏, 蒋秀根, 孟石平, 等. 整体-局部弯曲模型及其在简支组合梁中的应用[J]. 工程力学, 2012, 29 (12): 233-240. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201212035.htm

    DING Min, JIANG Xiu-gen, MENG Shi-ping, et al. Global-local bending model and its application in simply supported compositebeam[J]. Engineering Mechanics, 2012, 29 (12): 233-240. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201212035.htm
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  620
  • HTML全文浏览量:  158
  • PDF下载量:  807
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-18
  • 刊出日期:  2014-12-25

目录

    /

    返回文章
    返回