留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速列车齿轮传动系统谐振分析

黄冠华 张卫华 宋纾崎 朱少成 梁树林 王兴宇

黄冠华, 张卫华, 宋纾崎, 朱少成, 梁树林, 王兴宇. 高速列车齿轮传动系统谐振分析[J]. 交通运输工程学报, 2014, 14(6): 51-58.
引用本文: 黄冠华, 张卫华, 宋纾崎, 朱少成, 梁树林, 王兴宇. 高速列车齿轮传动系统谐振分析[J]. 交通运输工程学报, 2014, 14(6): 51-58.
HUANG Guan-hua, ZHANG Wei-hua, SONG Shu-qi, ZHU Shao-cheng, LIANG Shu-lin, WANG Xing-yu. Harmonic resonance analysis of gear transmission system for high-speed train[J]. Journal of Traffic and Transportation Engineering, 2014, 14(6): 51-58.
Citation: HUANG Guan-hua, ZHANG Wei-hua, SONG Shu-qi, ZHU Shao-cheng, LIANG Shu-lin, WANG Xing-yu. Harmonic resonance analysis of gear transmission system for high-speed train[J]. Journal of Traffic and Transportation Engineering, 2014, 14(6): 51-58.

高速列车齿轮传动系统谐振分析

基金项目: 

国家自然科学基金项目 U1234208

中国铁路总公司科技研究开发计划课题 2013J008-A

详细信息
    作者简介:

    黄冠华(1987-), 男, 江西吉安人, 西南交通大学工学博士研究生, 从事高速列车传动系统动力学研究

    张卫华(1961-), 男, 江苏宜兴人, 西南交通大学教授, 工学博士

  • 中图分类号: U270.33

Harmonic resonance analysis of gear transmission system for high-speed train

More Information
    Author Bio:

    HUANG Guan-hua (1987-), male, doctoral student, +86-28-87634057, hgh7735@126.com

    ZHANG Wei-hua (1961-), male, professor, PhD, +86-28-87601068, tpl@swjtu.edu.cn

  • 摘要: 利用有限元方法得到高速列车齿轮传动系统时变啮合刚度, 利用傅里叶级数模拟啮合刚度和传动误差, 用多项式拟合齿侧间隙, 建立考虑时变啮合刚度、传动误差与齿侧间隙等多种非线性因素的高速列车斜齿轮传动系统弯扭耦合动力学模型。结合非线性多尺度法, 推导了高速列车齿轮传动系统谐波共振频率因子, 利用数值积分法对齿轮传动系统动力学方程进行求解, 得到了齿轮传动系统的频率响应曲线, 分析了静态载荷、动态载荷与阻尼对系统谐振响应的影响。分析结果表明: 齿轮传动系统中存在多种谐振频率因子, 超谐共振会发生跳跃现象, 谐波振动会引发系统倍频振动。当相对激励频率低于1.00时, 系统波动剧烈。在列车实际运营中应制定合理的运营速度, 以避免谐振的发生。

     

  • 图  1  斜齿轮传动系统动力学模型

    Figure  1.  Dynamics model of helical gear transmission system

    图  2  轮齿接触有限元模型

    Figure  2.  Contacting finite element model of gear pair

    图  3  啮合刚度曲线

    Figure  3.  Mesh stiffness curves

    图  4  误差曲线

    Figure  4.  Error curve

    图  5  齿侧间隙函数曲线

    Figure  5.  Curves of tooth backlash function

    图  6  频率响应曲线

    Figure  6.  Frequency response curves

    图  7  三阶超谐响应

    Figure  7.  Third-order super-harmonic responses

    图  8  二阶超谐响应

    Figure  8.  Second-order super-harmonic responses

    图  9  无谐振响应

    Figure  9.  Responses without super-harmonic resonance

    图  10  扭转振动位移

    Figure  10.  Torsional vibration displacements

  • [1] 王建军, 李其汉, 李润方. 齿轮系统非线性振动研究进展[J]. 力学进展, 2005, 35 (1): 37-51. doi: 10.3321/j.issn:1000-0992.2005.01.005

    WANG Jian-jun, LI Qi-han, LI Run-fang. Research advances for nonlinear vibration of gear transmission systems[J]. Advances in Mechanics, 2005, 35 (1): 37-51. (in Chinese). doi: 10.3321/j.issn:1000-0992.2005.01.005
    [2] FARSHIDIANFAR A, SAGHAFI A. Global bifurcation and chaos analysis in nonlinear vibration of spur gear systems[J]. Nonlinear Dynamics, 2014, 75 (4): 783-806. doi: 10.1007/s11071-013-1104-4
    [3] YANG Zheng, SHANG Jian-zhong, LUO Zi-rong, et al. Nonlinear dynamics modeling and analysis of torsional springloaded antibacklash gear with time-varying meshing stiffness and friction[J]. Advances in Mechanical Engineering, 2013, 2013 (1): 1-17. doi: 10.1177/1464419314536888
    [4] 张伟, 陈予恕. 含有参数激励非线性动力系统的现代理论的发展[J]. 力学进展, 1998, 28 (1): 1-16. doi: 10.3321/j.issn:1000-0992.1998.01.001

    ZHANG Wei, CHEN Yu-shu. Development of modern theory of nonlinear dynamical systems with parametric excitations[J]. Advances in Mechanics, 1998, 28 (1): 1-16. (in Chinese). doi: 10.3321/j.issn:1000-0992.1998.01.001
    [5] KAHRAMAN A, SINGH R. Interactions between timevarying mesh stiffness and clearance non-linearities in a geared system[J]. Journal of Sound and Vibration, 1991, 146 (1): 135-156. doi: 10.1016/0022-460X(91)90527-Q
    [6] KAHRAMAN A, BLANKENSHIP G W. Experiments on nonlinear dynamic behavior of an oscillator with clearance and periodically time-varying parameters[J]. Journal of Applied Mechanics, 1997, 64 (1): 217-226. doi: 10.1115/1.2787276
    [7] KAHRAMAN A, Effect of axial vibrations on the dynamics of a helical gear pair[J]. Journal of Vibration and Acoustics, 1993, 115 (1): 33-39.
    [8] KAHRAMAN A, SINGH R. Nonlinear dynamics of a geared rotor-bearing system with multiple clearances[J]. Journal of Sound and Vibration, 1991, 143 (3): 469-506. https://www.sciencedirect.com/science/article/pii/0022460X9190564Z
    [9] BENTON M, SEIREG A. Factors influencing instability and resonances in geared systems[J]. Journal of Mechanical Design, 1981, 103 (2): 372-378. doi: 10.1115/1.3254917
    [10] BENTON M, SEIREG A. A dynamic absorber for gear systems operating in resonance and instability regions[J]. Journal of Mechanical Design, 1981, 103 (2): 364-371. doi: 10.1115/1.3254916
    [11] RAGHOTHAMA A, NARAYANAN S. Bifurcation and chaos in geared rotor bearing system by incremental harmonic balance method[J]. Journal of Sound and Vibration, 1999, 226 (3): 469-492. doi: 10.1006/jsvi.1999.2264
    [12] SEYRANIAN A P, SOLEM F, PEDERSEN P. Multiparameter linear periodic systems: sensitivity analysis and applications[J]. Journal of Sound and Vibration, 2000, 229 (1): 89-111. doi: 10.1006/jsvi.1999.2478
    [13] BLANKENSHIP G W, KAHRAMAN A. Steady state forced response of a mechanical oscillator with combined parametric excitation and clearance type non-linearity[J]. Journal of Sound and Vibration, 1995, 185 (5): 743-765. doi: 10.1006/jsvi.1995.0416
    [14] BLANKENSHIP G W, SINGH R. A new gear mesh interface dynamic model to predict multi-dimensional force coupling and excitation[J]. Mechanism and Machine Theory, 1995, 30 (1): 43-57. doi: 10.1016/0094-114X(94)00018-G
    [15] BLANKENSHIP G W, SINGH R. Dynamic force transmissibility in helical gear pairs[J]. Mechanism and Machine Theory, 1995, 30 (3): 323-339. doi: 10.1016/0094-114X(94)00048-P
    [16] 姚远, 张红军, 罗赟, 等. 机车传动系统扭转与轮对纵向耦合振动稳定性[J]. 交通运输工程学报, 2009, 9 (1): 17-20. http://transport.chd.edu.cn/article/id/200901004

    YAO Yuan, ZHANG Hong-jun, LUO Yun, et al. Torsionallongitudinal coupling vibration stability of drive system for locomotive[J]. Journal of Traffic and Transportation Engineering, 2009, 9 (1): 17-20. (in Chinese). http://transport.chd.edu.cn/article/id/200901004
    [17] 孙涛, 沈允文, 孙智民, 等. 行星齿轮传动非线性动力学方程求解与动态特性分析[J]. 机械工程学报, 2002, 38 (3): 11-15. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200203002.htm

    SUN Tao, SHEN Yu-wen, SUN Zhi-min, et al. Behavior of planetary gear train solution and dynamic behavior analysis[J]. Chinese Journal of Mechanical Engineering, 2002, 38 (3): 11-15. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200203002.htm
    [18] 朱才朝, 黄泽好, 唐倩, 等. 风力发电齿轮箱系统耦合非线性动态特性的研究[J]. 机械工程学报, 2005, 41 (8): 203-207. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200508038.htm

    ZHU Cai-chao, HUANG Ze-hao, TANG Qian, et al. Analysis of nonlinear coupling dynamic characteristics of gearbox system about wind-driven generator[J]. Chinese Journal of Mechanical Engineering, 2005, 41 (8): 203-207. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200508038.htm
    [19] SIRICHAI S. Torsional properties of spur gears in mesh using nonlinear finite element analysis[D]. Perth: Curtin University of Technology, 1999.
    [20] 王建军, 洪涛, 吴仁智, 等. 齿轮系统参数振动问题研究综述[J]. 振动与冲击, 1997, 16 (4): 69-73, 97. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ199704015.htm

    WANG Jian-jun, HONG Tao, WU Ren-zhi, et al. Researches on parametric vibration of gear transmission systems—a review[J]. Journal of Vibration and Shock, 1997, 16 (4): 69-73, 97. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ199704015.htm
  • 加载中
图(10)
计量
  • 文章访问数:  714
  • HTML全文浏览量:  128
  • PDF下载量:  927
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-21
  • 刊出日期:  2014-12-25

目录

    /

    返回文章
    返回