留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

路段行程时间估计的浮动车数据挖掘方法

李慧兵 杨晓光 罗莉华

李慧兵, 杨晓光, 罗莉华. 路段行程时间估计的浮动车数据挖掘方法[J]. 交通运输工程学报, 2014, 14(6): 100-109.
引用本文: 李慧兵, 杨晓光, 罗莉华. 路段行程时间估计的浮动车数据挖掘方法[J]. 交通运输工程学报, 2014, 14(6): 100-109.
LI Hui-bing, YANG Xiao-guang, LUO Li-hua. Mining method of floating car data based on link travel time estimation[J]. Journal of Traffic and Transportation Engineering, 2014, 14(6): 100-109.
Citation: LI Hui-bing, YANG Xiao-guang, LUO Li-hua. Mining method of floating car data based on link travel time estimation[J]. Journal of Traffic and Transportation Engineering, 2014, 14(6): 100-109.

路段行程时间估计的浮动车数据挖掘方法

基金项目: 

国家自然科学基金项目 61304203

上海市科研计划项目 12ZR1444800

详细信息
    作者简介:

    李慧兵(1983-), 男, 山西吕梁人, 上海海事大学讲师, 工学博士, 从事智能交通系统研究

  • 中图分类号: U491.1

Mining method of floating car data based on link travel time estimation

More Information
    Author Bio:

    LI Hui-bing (1983-), male, lecturer, PhD, +86-21-38282347, hbli@shmtu.edu.cn

  • 摘要: 基于浮动车数据, 提出一种信号配时信息缺失下的路段行程时间估计方法, 由交叉口范围动态划分、路段影响范围划分、浮动车数据提取与路段行程时间估计4个模块组成, 每个模块的实现均需借助于前一模块的输出。根据交叉口信号控制下的车辆行驶状态, 在交叉口范围动态划分与路段影响范围划分2个模块中, 利用密度法将单元路段划分为不同区域。根据路段行程时间估计原理, 利用浮动车数据提取模块过滤掉受信号控制影响较大的浮动车数据, 提取路段行程时间估计的目标数据。利用路段行程时间估计模块挖掘历史浮动车数据, 根据浮动车目标数据点存在区域的不同, 将浮动车数据分为3类, 并对不同类型数据采取相应的断面通过时刻估计方法, 建立基于不同数据条件下的行程时间估计模型。利用VISSIM软件对路段行程时间估计方法进行仿真验证, 并与直接法和间接法进行对比分析。分析结果表明: 对于粗粒度浮动车数据, 路段行程时间估计方法的平均绝对误差和平均相对误差分别为12 s和8.67%, 优于传统的直接法与间接法。

     

  • 图  1  子状态1的路段划分

    Figure  1.  Link division of sub-state 1

    图  2  子状态2的路段划分

    Figure  2.  Link division of sub-state 1

    图  3  子状态3的路段划分

    Figure  3.  Link division of sub-state 3

    图  4  子状态4的路段划分

    Figure  4.  Link division of sub-state 4

    图  5  子状态5的路段划分

    Figure  5.  Link division of sub-state 5

    图  6  子状态6的路段划分

    Figure  6.  Link division of sub-state 6

    图  7  子状态7的路段划分

    Figure  7.  Link division of sub-state 7

    图  8  子状态8的路段划分

    Figure  8.  Link division of sub-state 8

    图  9  平均最大排队长度

    Figure  9.  Average maximum queuing lengths

    图  10  单元路段

    Figure  10.  Link unit

    图  11  交叉口间的区段划分

    Figure  11.  Segment division between two intersections

    图  12  路段影响范围划分

    Figure  12.  Division of link influence scope

    图  13  数据类型1

    Figure  13.  Data type 1

    图  14  数据类型2

    Figure  14.  Data type 2

    图  15  数据类型3

    Figure  15.  Data type 3

    图  16  排队区域的区段划分

    Figure  16.  Segment division of queuing region

    图  17  畅通区域的区段划分

    Figure  17.  Segment division of unblocked region

    图  18  情景1

    Figure  18.  Scenario 1

    图  19  情景2

    Figure  19.  Scenario 2

    图  20  情景3

    Figure  20.  Scenario 3

    图  21  绝对误差比较

    Figure  21.  Comparison of absolute errors

    图  22  相对误差比较

    Figure  22.  Comparison of relative errors

    表  1  子状态属性

    Table  1.   Sub-state properties

    下载: 导出CSV

    表  2  目标交叉口的信息配时方案

    Table  2.   Signal timing plan of target intersection

    下载: 导出CSV

    表  3  路段行程时间

    Table  3.   Link travel times  s

    下载: 导出CSV
  • [1] WANG Jian-qiang, NIU Hui-min. Graded-information feedback strategy in two-route systems under ATIS[J]. Journal of Traffic and Transportation Engineering: English Edition, 2014, 1 (2): 138-145. doi: 10.1016/S2095-7564(15)30098-2
    [2] WU C H, HO J M, LEE D T. Travel time prediction with support vector regression[J]. IEEE Transactions on Intelligent Transportation Systems, 2004, 5 (4): 276-281. doi: 10.1109/TITS.2004.837813
    [3] SUN Lu, YANG Jun, MAHMASSANI H. Travel time estimation based on piecewise truncated quadratic speed trajectory[J]. Transportation Research Part A: Policy and Practice, 2008, 42 (1): 173-186. doi: 10.1016/j.tra.2007.08.004
    [4] ZHENG Fang-fang, ZUYLEN H. Comparison of urban link travel time estimation models based on probe vehicle data[C]∥MAO Bao-hua, TIAN Zong-zhong, HUANG Hai-jun, et al. Seventh International Conference on Traffic and Transportation Studies. Kunming: ASCE, 2010: 615-626.
    [5] ZHENG Fang-fang, ZUYLEN H. Urban link travel time estimation based on sparse probe vehicle data[J]. Transportation Research Part C: Emerging Technologies, 2013, 31 (1): 145-157. https://www.sciencedirect.com/science/article/pii/S0968090X12000575
    [6] BI Song, WANG Zhi-jian, HAN Cun-wu, et al. Estimation of left-turning travel time at traffic intersection[J]. The Journal of China Universities of Posts and Telecommunications, 2013, 20 (S1): 10-14. https://www.sciencedirect.com/science/article/pii/S1005888513602575
    [7] HAN Shu, LIN Hang-fei, CHEN Xiao-hong. The application of link aggregating algorithm in travel time estimate on signalized arterial network[C]∥PENG Qi-yuan, WANG K C P, QIU Yan-jun, et al. Second International Conference on Transportation Engineering. Chengdu: ASCE, 2009: 2315-2321.
    [8] JIANG Zhou, ZHANG Cun-bao, XIA Yin-xia. Travel time prediction model for urban road network based on multisource data[J]. Procedia-Social and Behavioral Sciences, 2014, 138: 811-818. doi: 10.1016/j.sbspro.2014.07.230
    [9] 李进燕, 朱征宇, 刘琳, 等. 基于简化路网模型的卡尔曼滤波多步行程时间预测方法[J]. 系统工程理论与实践, 2013, 33 (5): 1289-1297. doi: 10.3969/j.issn.1000-6788.2013.05.026

    LI Jin-yan, ZHU Zheng-yu, LIU Lin, et al. Multi-step Kalman filtering travel time estimation method based on simplified road network model[J]. Systems Engineering—Theory and Practice, 2013, 33 (5): 1289-1297. (in Chinese). doi: 10.3969/j.issn.1000-6788.2013.05.026
    [10] ZHENG Fang-fang, WAN Yu, WU Ping-heng. Link traveltime prediction using extended exponential smoothing and Kalman filter in dynamic networks[C]∥LIU Rong-fang, ZHANG Jin, GUAN Chang-qian. The Eighth International Conference of Chinese Logistics and Transportation Professionals. Chengdu: ASCE, 2008: 3753-3759.
    [11] LIU H X, MA Wen-teng. A virtual vehicle probe model for time-dependent travel time estimation on signalized arterials[J]. Transportation Research Part C: Emerging Technologies, 2009, 17 (1): 11-26. doi: 10.1016/j.trc.2008.05.002
    [12] JENELIUS E, KOUTSOPOULOS H N. Travel time estimation for urban road networks using low frequency probe vehicle data[J]. Transportation Research Part B: Methodological, 2013, 53: 64-81. doi: 10.1016/j.trb.2013.03.008
    [13] 李嘉, 刘春华, 胡赛阳, 等. 基于交通数据融合技术的行程时间预测模型[J]. 湖南大学学报: 自然科学版, 2014, 41 (1): 33-38. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201401006.htm

    LI Jia, LIU Chun-hua, HU Sai-yang, et al. A travel time prediction model based on traffic data fusion technology[J]. Journal of Hunan University: Natural Sciences, 2014, 41 (1): 33-38. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201401006.htm
    [14] 方路平, 陈仕骁, 赵飞帆. 基于小样本浮动车系统的平均行程时间估计[J]. 计算机仿真, 2012, 29 (9): 367-370. doi: 10.3969/j.issn.1006-9348.2012.09.091

    FANG Lu-ping, CHEN Shi-xiao, ZHAO Fei-fan. Average link travel time estimation based on floating car of small sample size[J]. Computer Simulation, 2012, 29 (9): 367-370. (in Chinese). doi: 10.3969/j.issn.1006-9348.2012.09.091
    [15] 姜桂艳, 常安德, 张玮. 基于GPS浮动车的路段行程时间估计方法比较[J]. 吉林大学学报: 工学版, 2009, 39 (增2): 182-186. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY2009S2039.htm

    JIANG Gui-yan, CHANG An-de, ZHANG Wei. Comparison of link travel-time estimation methods based on GPS equipped floating car[J]. Journal of Jilin University: Engineering and Technology Edition, 2009, 39 (S2): 182-186. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY2009S2039.htm
    [16] 姜桂艳, 常安德, 张玮, 等. 基于GPS浮动车的自然路段行程时间估计方法[J]. 公路, 2009 (11): 87-90. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200911019.htm

    JIANG Gui-yan, CHANG An-de, ZHANG Wei. Physical link travel-time estimation method based on GPS equipped floating car[J]. Highway, 2009 (11): 87-90. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200911019.htm
    [17] 姜桂艳, 常安德, 吴超腾. 基于GPS浮动车的交通信息采集方法[J]. 吉林大学学报: 工学版, 2010, 40 (4): 971-975. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201004017.htm

    JIANG Gui-yan, CHANG An-de, WU Chao-teng. Traffic information collection method based on GPS equipped floating car[J]. Journal of Jilin University: Engineering and Technology Edition, 2010, 40 (4): 971-975. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201004017.htm
    [18] 韩舒, 林航飞, 辛飞飞. 浮动车采集系统中城市道路分段方法研究[J]. 交通与计算机, 2007, 25 (5): 105-109. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS200705031.htm

    HAN Shu, LIN Hang-fei, XIN Fei-fei. Method of merging urban road subsections based on floating car data[J]. Computer and Communications, 2007, 25 (5): 105-109. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS200705031.htm
    [19] 熊英格, 徐卓立, 刘好德. 基于浮动车数据的交叉口范围动态划分方法[J]. 交通信息与安全, 2009, 27 (5): 38-43. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS200905010.htm

    XIONG Ying-ge, XU Zhuo-li, LIU Hao-de. Methods of intersection dynamic subsections based on floating car data[J]. Journal of Transport Information and Safety, 2009, 27 (5): 38-43. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS200905010.htm
    [20] 胡小文. 基于探测车数据和固定检测器数据的路段行程时间估计[D]. 上海: 同济大学, 2008.

    HU Xiao-wen. Link travel time estimation based on probe data and fixed detector data[D]. Shanghai: Tongji University, 2008. (in Chinese).
  • 加载中
图(22) / 表(3)
计量
  • 文章访问数:  648
  • HTML全文浏览量:  104
  • PDF下载量:  1028
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-28
  • 刊出日期:  2014-12-25

目录

    /

    返回文章
    返回