留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于聚类分析的城市交通TOD优化控制方法

姚佼 徐洁琼 韩印

姚佼, 徐洁琼, 韩印. 基于聚类分析的城市交通TOD优化控制方法[J]. 交通运输工程学报, 2014, 14(6): 110-116.
引用本文: 姚佼, 徐洁琼, 韩印. 基于聚类分析的城市交通TOD优化控制方法[J]. 交通运输工程学报, 2014, 14(6): 110-116.
YAO Jiao, XU Jie-qiong, HAN Yin. TOD optimal control method of urban traffic based on clustering analysis[J]. Journal of Traffic and Transportation Engineering, 2014, 14(6): 110-116.
Citation: YAO Jiao, XU Jie-qiong, HAN Yin. TOD optimal control method of urban traffic based on clustering analysis[J]. Journal of Traffic and Transportation Engineering, 2014, 14(6): 110-116.

基于聚类分析的城市交通TOD优化控制方法

基金项目: 

国家自然科学基金项目 60974093

上海高校一流学科建设计划项目 S1201YLXK

上海高校青年教师培养资助计划项目 slg12009

详细信息
    作者简介:

    姚佼(1982-), 男, 山西运城人, 上海理工大学讲师, 工学博士, 从事智能交通控制研究

  • 中图分类号: U491.54

TOD optimal control method of urban traffic based on clustering analysis

More Information
    Author Bio:

    YAO-Jiao (1982-), male, lecturer, PhD, +86-21-65710430, yaojiao@126.com

  • 摘要: 为了降低环形线圈车辆检测器故障率, 基于指数平滑异同移动平均线法对缺失历史数据进行修补, 运用Ward最小方差法对历史交通流量数据进行聚类分析, 以改进立方群准则作为聚类终止条件, 确定TOD多方案控制的最优方案数和最佳切换时刻, 利用交通信号配时优化软件Synchro对TOD优化控制方法进行仿真验证。验证结果表明: 优化控制方法能够提供更精细的TOD控制方案, 更能体现对实际交通需求波动的响应, 优化后控制方案的车均延误减少率平均为11.90%, 其中早高峰前时段的车均延误减少率为20.27%, 晚低峰、晚高峰和早高峰的车均延误减少率分别为12.99%、8.07%、6.25%。

     

  • 图  1  车道功能和相位设置

    Figure  1.  Lane function and phase configuration

    图  2  运行时段对比

    Figure  2.  Comparison of operation periods

    图  3  实际交通流量

    Figure  3.  Actual traffic flow

    图  4  车均延误对比曲线

    Figure  4.  Comparison curves of average each vehicle delay

    图  5  车均延误减少率

    Figure  5.  Decrement rates of average each vehicle delay

    表  1  现状控制方案的运行时段

    Table  1.   Operation periods of current control plans

    下载: 导出CSV

    表  2  信号配时方案

    Table  2.   Signal timing plans

    下载: 导出CSV

    表  3  历史交通流量数据的聚类过程Fig.3 Clustering procedure of historical traffic flow data

    下载: 导出CSV

    表  4  聚类后控制方案的运行时段

    Table  4.   Operation periods of control plans after clustering

    下载: 导出CSV

    表  5  聚类前后控制方案的车均延误

    Table  5.   Average each vehicle delays of control plans before and after clustering

    下载: 导出CSV
  • [1] KLEIN L A, MILLS M K, GIBSON D R P. Traffic Detector Handbook[M]. Washington DC: Federal Highway Administration, 2006.
    [2] 麻育平, 王磊. 交通信号控制系统中TOD优化方法浅析[J]. 道路交通管理, 2012 (6): 48-50. https://www.cnki.com.cn/Article/CJFDTOTAL-DLJG201206029.htm

    MA Yu-ping, WANG Lei. Analysis of TOD optimization method in traffic signal control system[J]. Road Traffic Management, 2012 (6): 48-50. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLJG201206029.htm
    [3] PAPAGEORGIOU M. A new approach to time-of-day control based on a dynamic freeway traffic model[J]. Transportation Research Part B: Methodological, 1980, 14 (4): 349-360. doi: 10.1016/0191-2615(80)90015-6
    [4] KREER J B. Factors affecting the relative performance of traffic responsive and time-of-day traffic signal control[J]. Transportation Research, 1976, 10 (2): 75-81. doi: 10.1016/0041-1647(76)90043-5
    [5] HAUSER T A, SCHERER W T. Data mining tools for realtime traffic signal decision support and maintenance[C]∥IEEE. 2001 IEEE International Conference on Systems, Man, and Cybernetics. Tucson: IEEE, 2001: 1471-1477.
    [6] PARK B, LEE D H, YUN I. Enhancement of time of day based traffic signal control[C]∥IEEE. 2003IEEE International Conference on Systems, Man, and Cybernetics. Manchester: IEEE, 2003: 3619-3624.
    [7] PARK B, SANTRA P, YUN I, et al. Optimization of timeof-day breakpoints for better traffic signal control[J]. Transportation Research Record, 2004 (1867): 217-223. https://trid.trb.org/view/741281
    [8] PARK B, LEE J. A procedure for determining time-of-day break points for coordinated actuated traffic signal systems[J]. KSCE Journal of Civil Engineering, 2008, 12 (1): 37-44. doi: 10.1007/s12205-008-8037-3
    [9] LEE J, KIM J, PARK B. A genetic algorithm-based procedure for determining optimal time-of-day break points for coordinated actuated traffic signal systems[J]. KSCE Journal of Civil Engineering, 2011, 15 (1): 197-203. doi: 10.1007/s12205-011-1093-0
    [10] ZHOU Zhan-hong, CAI Ming. Intersection signal control multi-objective optimization based on genetic algorithm[J]. Journal of Traffic and Transportation Engineering: English Edition, 2014, 1 (2): 153-158. doi: 10.1016/S2095-7564(15)30100-8
    [11] WANG Xiao-dong, COTTRELL W, MU Si-chun. Using K-means clustering to identify time-of-day break points for traffic signal timing plans[C]∥IEEE. Proceedings of the 8 th International IEEE Conference on Intelligent Transportation Systems. Vienna: IEEE, 2005: 519-524.
    [12] RATROUT N T. Subtractive clustering-based K-means technique for determining optimum time-of-day breakpoints[J]. Journal of Computing in Civil Engineering, 2010, 25 (5): 380-387.
    [13] YANG Jun, YANG Yang. Optimization of time of day break points of intersection using cluster method[J]. International Journal of Advancements in Computing Technology, 2013, 5 (6): 479-487. doi: 10.4156/ijact.vol5.issue6.56
    [14] GUO Rui, ZHANG Yu. Cluster analysis-based procedure to identify time-of-day breakpoints for coordinated semi-actuated traffic signal system[C]∥TRB. Transportation Research Board 91 st Annual Meeting. Washington DC: TRB, 2012: 1-18.
    [15] GUO Rui, ZHANG Yu. Identifying time-of-day breakpoints based on nonintrusive data collection platforms[J]. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 2014, 18 (2): 164-174. doi: 10.1080/15472450.2013.802151
    [16] QU Xiao-bo, ZHANG Jin, WANG Shuai-an, et al. Modelling follow up time at a single-lane roundabout[J]. Journal of Traffic and Transportation Engineering: English Edition, 2014, 1 (2): 97-102. doi: 10.1016/S2095-7564(15)30093-3
    [17] BALKE K N, RAO K S, HUSTED M. Incorporating the effects of signal transition in the selection of timing plans in traffic responsive signal systems[R]. Austin: Texas A & M University, 1998.
    [18] SHELBY S G, BULLOCK D M, GETTMAN D. Transition methods in traffic signal control[J]. Transportation Research Record, 2006 (1978): 130-140. https://trid.trb.org/view/777654
    [19] 栗红强, 陆化普, 刘强. 城市交通线控多时段配时方案过渡算法研究[J]. 武汉理工大学学报: 交通科学与工程版, 2008, 32 (5): 779-781, 852. doi: 10.3963/j.issn.2095-3844.2008.05.002

    LI Hong-qiang, LU Hua-pu, LIU Qiang. Research on transition algorithms for timing plans of arterial time in-day traffic control[J]. Journal of Wuhan University of Technology: Transportation Science and Engineering, 2008, 32 (5): 779-781, 852. (in Chinese). doi: 10.3963/j.issn.2095-3844.2008.05.002
    [20] 卢凯, 徐建闽, 郑淑鉴, 等. 交通信号协调控制方案过渡优化算法[J]. 交通运输工程学报, 2012, 12 (6): 97-103. http://transport.chd.edu.cn/article/id/201206015

    LU Kai, XU Jian-min, ZHENG Shu-jian, et al. Optimization algorithm of coordinated control scheme transition of traffic signal[J]. Journal of Traffic and Transportation Engineering, 2012, 12 (6): 97-103. (in Chinese). http://transport.chd.edu.cn/article/id/201206015
    [21] WANG Jian-qiang, NIU Hui-min. Graded-information feedback strategy in two-route systems under ATIS[J]. Journal of Traffic and Transportation Engineering: English Edition, 2014, 1 (2): 138-145. doi: 10.1016/S2095-7564(15)30098-2
    [22] SARLE W S. Cubic clustering criterion[R]. Cary: SAS Institute Inc., 1983.
    [23] LIAO Fei-xiong, ARENTZE T, TIMMERMANS H. Multi-state supernetworks: recent progress and prospects[J]. Journal of Traffic and Transportation Engineering: English Edition, 2014, 1 (1): 13-27. doi: 10.1016/S2095-7564(15)30085-4
    [24] 姚佼. 基于车辆行驶数据的交叉口交通控制机制研究[D]. 上海: 同济大学, 2011.

    YAO Jiao. Study on vehicle probe data based traffic control mechanism at isolated intersection[D]. Shanghai: Tongji University, 2011. (in Chinese).
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  665
  • HTML全文浏览量:  127
  • PDF下载量:  822
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-13
  • 刊出日期:  2014-12-25

目录

    /

    返回文章
    返回