Distribution characteristic of AIS signal field intensity along mountainous waterway
-
摘要: 船舶自动识别系统(Automatic Identification System, AIS) 在内河应用中, 由于山区遮挡产生大量的信号盲区, 使其效用受限, 使用Okumura-Hata模型研究了AIS通信系统在这些地区的可靠性。在长江三峡坝区航段上基于坝河口、石牌、西坝3个基站设置了29个测点, 其中山区地带为13个测点, 开阔地带为16个测点。测量了所有测点的实际场强, 并与理论场强进行对比分析。使用线性回归法对Okumura-Hata模型的修正参数进行优化, 计算了山区地带13个测点和开阔地带16个测点中距离大于2.9 km的9个测点的修正场强。为验证修正模型的准确性, 在重庆永川航段设置6个测点进行验证试验。分析结果表明: AIS信号在传播过程中3 km为临界距离, AIS信号传播距离小于3 km时, 曲线较平缓, 信号较好, 传播距离大于3 km时, 曲线较陡峭, 信号质量急剧变差。Okumura-Hata模型计算的理论场强与实际场强分布趋势吻合, 但在具体数值上存在差距。验证试验中6个测点的实际场强平均值为-106.636 dBm, 理论场强平均值为-100.982 dBm, 修正场强平均值为-107.710 dBm, Okumura-Hata模型计算结果的平均误差为5.654 dBm, 平均准确率为94.615%, 修正模型计算结果的平均误差为1.071 dBm, 平均准确率为98.329%。Abstract: Due to the shadowing effect of AIS mountains signals, there were many blind areas along mountainous waterways limiting the application of AIS.Okumura-Hata model was used to study the reliability of AIS communication system in those areas.29 test points, which were primarily served by three base stations at Bahekou, Shipai, and Xiba located along the Three Gorges Dam segment, were set.Among the 29 test points, 13 test points were in mountainous areas and 16 test points were in open areas.The actual field intensities of the 29 test points were measured and compared with theoretical field intensities.A linear regression model was used to optimize the corrected parameter of Okumura-Hata model.The correcting field intensities at the 13 test points in mountainous areas and at 9 out of 16 test points in open areas, having a distancegreater than 2.9 km from the base stations, were calculated.In order to verify the correctness of modified model, verification test was carried out for 6 test points along Chongqing—Yongchuan segment.Analysis result indicates that a distance of 3 km is a critical threshold for AIS signal transmission.When the propagation distance is less than 3 km, the AIS signal is good and the AIS field intensity curve is smooth.However, when the propagation distance is more than 3 km, the AIS signal quality reduces sharply and the curve is steep.The distribution trend of theoretical field intensity calculated by Okumura-Hata model is consistent with that of actual field intensity, but there are still gaps between the theoretical values and the actual values.In verification test, the average values of actual field intensity, theoretical field intensity, and correcting field intensity at 6 test points are-106.636, -100.982, -107.710 dBm, respectively.The average error and precision rate of calculated result of Okumura-Hata model are 5.654 dBm and 94.615% respectively, and the values of correcting model are 1.071 dBm and 98.329% respectively.
-
Key words:
- traffic information engineering /
- mountainous waterway /
- AIS /
- linear regression /
- Okumura-Hata model /
- field intensity
-
表 1 测点的理论场强与实际场强
Table 1. Theoretical and actual field intensities of test points
表 2 山区地带修正误差
Table 2. Correcting errors of mountainous region
表 3 开阔地带修正误差
Table 3. Correcting errors of open area
表 4 验证结果
Table 4. Verified result
-
[1] 严忠贞, 严新平, 马枫, 等. 绿色长江航运智能化信息服务系统及其关键技术研究[J]. 交通信息与安全, 2010, 28 (6): 76-81. doi: 10.3963/j.ISSN1674-4861.2010.06.021YAN Zhong-zhen, YAN Xin-ping, MA Feng, et al. Green Yangtze River intelligent shipping information system and its key technologies[J]. Journal of Transport Information and Safety, 2010, 28 (6): 76-81. (in Chinese). doi: 10.3963/j.ISSN1674-4861.2010.06.021 [2] 马枫, 严新平, 初秀民. 船舶自动识别系统性能半实物仿真方法研究[J]. 系统仿真学报, 2013, 25 (6): 1315-1320. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201306029.htmMA Feng, YAN Xin-ping, CHU Xiu-min. Research on automatic identify system performance with hardware-in-the-loop simulation[J]. Journal of System Simulation, 2013, 25 (6): 1315-1320. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201306029.htm [3] 陶立敏, 许昌如. 自动识别系统(AIS) 基站的组网研究[J]. 航海技术, 2004 (4): 31-33. doi: 10.3969/j.issn.1006-1738.2004.04.018TAO Li-min, XU Chang-ru. Study of the AIS netting[J]. Marine Technology, 2004 (4): 31-33. (in Chinese). doi: 10.3969/j.issn.1006-1738.2004.04.018 [4] VESECKY J F, LAWS K E, PADUAN J D. Using HF surface wave radar and the ship automatic identification system (AIS) to monitor coastal vessels[C]∥IEEE. 2009IEEE International Geoscience and Remote Sensing Symposium. Cape Town: IEEE, 2009: 761-764. [5] LARSEN J A, MORTENSEN H P, NIELSEN J D. An SDR based AIS receiver for satellites[C]∥IEEE. 2011 5 th International Conference on Recent Advances in Space Technologies (RAST). Istanbul: IEEE, 2011: 526-531. [6] 马枫, 初秀民, 严新平. AIS基站短消息特性[J]. 交通运输工程学报, 2012, 12 (6): 111-118. doi: 10.3969/j.issn.1671-1637.2012.06.017MA Feng, CHU Xiu-min, YAN Xin-ping. Short message characteristics of AIS base stations[J]. Journal of Traffic and Transportation Engineering, 2012, 12 (6): 111-118. (in Chinese). doi: 10.3969/j.issn.1671-1637.2012.06.017 [7] 马枫, 初秀民, 严新平. 内河AIS船台自适应发射功率调节技术[J]. 中国航海, 2013, 36 (1): 28-34. doi: 10.3969/j.issn.1000-4653.2013.01.007MA Feng, CHU Xiu-min, YAN Xin-ping. Self-adaptive transmission power adjustment technology for inland river AIS terminals[J]. Navigation of China, 2013, 36 (1): 28-34. (in Chinese). doi: 10.3969/j.issn.1000-4653.2013.01.007 [8] 马枫, 严新平, 初秀民, 等. 船舶自动识别系统信号失效与场强的相关性[J]. 大连海事大学学报, 2011, 37 (3): 111-114. doi: 10.3969/j.issn.1671-7031.2011.03.028MA Feng, YAN Xin-ping, CHU Xiu-min, et al. Correlation between signal failure and field strength in automatic identify system[J]. Journal of Dalian Maritime University, 2011, 37 (3): 111-114. (in Chinese). doi: 10.3969/j.issn.1671-7031.2011.03.028 [9] 宋成果. 基于虚拟现实的内河航道航标布设的仿真研究[D]. 武汉: 武汉理工大学, 2012.SONG Cheng-guo. Research of the inland waterway aids to navigation layout simulation based on virtual reality[D]. Wuhan: Wuhan University of Technology, 2012. (in Chinese). [10] 王祖良, 樊文生, 郑林华. 海面电波传播损耗模型研究与仿真[J]. 电波科学学报, 2008, 23 (6): 1095-1099. doi: 10.3969/j.issn.1005-0388.2008.06.015WANG Zu-liang, FAN Wen-sheng, ZHENG Lin-hua. Study and simulation on sea-surface propagation prediction model[J]. Chinese Journal of Radio Science, 2008, 23 (6): 1095-1099. (in Chinese). doi: 10.3969/j.issn.1005-0388.2008.06.015 [11] 吴青, 崔建平, 马枫, 等. 基于奥村模型的内河AIS基站监测范围研究[J]. 武汉理工大学学报: 信息与管理工程版, 2011, 33 (1): 36-39. https://www.cnki.com.cn/Article/CJFDTOTAL-WHQC201101010.htmWU Qing, CUI Jian-ping, MA Feng, et al. Research of monitoring scope of inland AIS base station based on Okumura-Hata model[J]. Journal of Wuhan University of Technology: Information and Management Engineering, 2011, 33 (1): 36-39. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WHQC201101010.htm [12] 胡绘斌. 预测复杂环境下电波传播特性的算法研究[D]. 长沙: 国防科学技术大学, 2006.HU Hui-bin. Prediction study on the algorithm of radio waves propagation characteristics under complicated environment[D]. Changsha: National University of Defense Technology, 2006. (in Chinese). [13] HASEGAEA K, NIWA K, MORI S, et al. Simulation-based master plan design and its safety assessment for congested waterways managements[C]∥Shanghai Jiaotong University. 2 nd International Maritime Conference on Design for Safety. Shanghai: Shanghai Jiaotong University, 2004: 265-269. [14] HATA K, HASEGAWA K, NIWA K, et al. AIS simulator and ITS applications[C]∥IEEE. 48 th International Symposium ELMAR-2006. Zadar: IEEE, 2006: 223-226. [15] 闫岩, 王蔷, 杜正伟. 超宽带信号室内场强分布[J]. 电子技术应用, 2005, 31 (9): 54-57. https://www.cnki.com.cn/Article/CJFDTOTAL-DZJY200509019.htmYAN Yan, WANG Qiang, DU Zheng-wei. UMB signal indoor electric field distribution[J]. Application of Electronic Technique, 2005, 31 (9): 54-57. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DZJY200509019.htm [16] 毋河海. S形分布的数据拟合数学模型研究[J]. 武汉大学学报: 信息科学版, 2009, 34 (4): 474-478. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200904024.htmWU He-hai. Study of mathematic model for fitting S shape distributed data[J]. Geomatics and Information Science of Wuhan University, 2009, 34 (4): 474-478. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200904024.htm [17] 毋河海. 数字曲线拐点的自动确定[J]. 武汉大学学报: 信息科学版, 2003, 28 (3): 330-335. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200303014.htmWU He-hai. Automatic determination of inflection point and its applications[J]. Geomatics and Information Science of Wuhan University, 2003, 28 (3): 330-335. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200303014.htm [18] 孙星, 吴勇, 初秀民. 船-标-岸协同下智能长江航运及其发展展望[J]. 交通信息与安全, 2010, 28 (6): 48-52, 56. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201006016.htmSUN Xing, WU Yong, CHU Xiu-min. Intelligent Yangtze River shipping and ITS prospects based on coordination of ship-markbank[J]. Journal of Transport Information and Safety, 2010, 28 (6): 48-52, 56. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201006016.htm [19] 徐建闽, 林思, 焦光庭, 等. 大交通模式下的ITS体系框架研究[J]. 交通信息与安全, 2009, 27 (2): 1-4, 50. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS200902003.htmXU Jian-min, LIN Si, JIAO Guang-ting, et al. ITS architecture of general communications[J]. Journal of Transport Information and Safety, 2009, 27 (2): 1-4, 50. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS200902003.htm [20] 季忠, 黎滨洪, 王豪行, 等. 一种高效的室内射线跟踪传播预测模型[J]. 上海交通大学学报, 2000, 34 (2): 276-280. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT200002031.htmJI Zhong, LI Bin-hong, WANG Hao-xing, et al. An effective propagation estimation model for indoor radio communications using ray tracing technique[J]. Journal of Shanghai Jiaotong University, 2000, 34 (2): 276-280. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT200002031.htm