留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

山区航道AIS信号场强分布特性

初秀民 刘潼 马枫 刘兴龙 钟鸣

初秀民, 刘潼, 马枫, 刘兴龙, 钟鸣. 山区航道AIS信号场强分布特性[J]. 交通运输工程学报, 2014, 14(6): 117-126.
引用本文: 初秀民, 刘潼, 马枫, 刘兴龙, 钟鸣. 山区航道AIS信号场强分布特性[J]. 交通运输工程学报, 2014, 14(6): 117-126.
CHU Xiu-min, LIU Tong, MA Feng, LIU Xing-long, ZHONG Ming. Distribution characteristic of AIS signal field intensity along mountainous waterway[J]. Journal of Traffic and Transportation Engineering, 2014, 14(6): 117-126.
Citation: CHU Xiu-min, LIU Tong, MA Feng, LIU Xing-long, ZHONG Ming. Distribution characteristic of AIS signal field intensity along mountainous waterway[J]. Journal of Traffic and Transportation Engineering, 2014, 14(6): 117-126.

山区航道AIS信号场强分布特性

基金项目: 

国家自然科学基金项目 61273234

交通运输部信息化技术研究项目 2013-364-548-200

武汉理工大学自主创新研究基金项目 2014-zy-074

详细信息
    作者简介:

    初秀民(1969-), 男, 吉林通化人, 武汉理工大学研究员, 工学博士, 从事交通信息智能化技术研究

  • 中图分类号: U675.7

Distribution characteristic of AIS signal field intensity along mountainous waterway

More Information
    Author Bio:

    CHU Xiu-min (1969-), male, researcher, PhD, +86-27-86581899, chuxm@whut.edu.cn.

  • 摘要: 船舶自动识别系统(Automatic Identification System, AIS) 在内河应用中, 由于山区遮挡产生大量的信号盲区, 使其效用受限, 使用Okumura-Hata模型研究了AIS通信系统在这些地区的可靠性。在长江三峡坝区航段上基于坝河口、石牌、西坝3个基站设置了29个测点, 其中山区地带为13个测点, 开阔地带为16个测点。测量了所有测点的实际场强, 并与理论场强进行对比分析。使用线性回归法对Okumura-Hata模型的修正参数进行优化, 计算了山区地带13个测点和开阔地带16个测点中距离大于2.9 km的9个测点的修正场强。为验证修正模型的准确性, 在重庆永川航段设置6个测点进行验证试验。分析结果表明: AIS信号在传播过程中3 km为临界距离, AIS信号传播距离小于3 km时, 曲线较平缓, 信号较好, 传播距离大于3 km时, 曲线较陡峭, 信号质量急剧变差。Okumura-Hata模型计算的理论场强与实际场强分布趋势吻合, 但在具体数值上存在差距。验证试验中6个测点的实际场强平均值为-106.636 dBm, 理论场强平均值为-100.982 dBm, 修正场强平均值为-107.710 dBm, Okumura-Hata模型计算结果的平均误差为5.654 dBm, 平均准确率为94.615%, 修正模型计算结果的平均误差为1.071 dBm, 平均准确率为98.329%。

     

  • 图  1  AIS信号衰减波形

    Figure  1.  Attenuation waveforms of AIS signals

    图  2  AIS信号绕射原理

    Figure  2.  Diffraction priciple of AIS signal

    图  3  试验路线

    Figure  3.  Experimental route

    图  4  坝河口基站试验轨迹

    Figure  4.  Experimental track of Bahekou base station

    图  5  石牌基站试验轨迹

    Figure  5.  Experimental track of Shipai base station

    图  6  西坝基站试验轨迹

    Figure  6.  Experimental track of Xiba base station

    图  7  实际场强与距离关系

    Figure  7.  Relationships between actual field intensities and distances

    图  8  开阔地带和山区地带的实际场强与理论场强

    Figure  8.  Actual and theoretical field intensities of open area and mountainous region

    图  9  场强误差曲线

    Figure  9.  Difference curves of field intensity

    图  10  山区地带拟合曲线

    Figure  10.  Fitting curve of mountainous region

    图  11  开阔地带拟合曲线

    Figure  11.  Fitting curve of open area

    图  12  山区地带场强比较

    Figure  12.  Comparison of field intensities of mountainous region

    图  13  开阔地带场强比较

    Figure  13.  Comparison of field intensities of open area

    图  14  永川基站试验轨迹

    Figure  14.  Experimental truck of Yongchuan base station

    表  1  测点的理论场强与实际场强

    Table  1.   Theoretical and actual field intensities of test points

    下载: 导出CSV

    表  2  山区地带修正误差

    Table  2.   Correcting errors of mountainous region

    下载: 导出CSV

    表  3  开阔地带修正误差

    Table  3.   Correcting errors of open area

    下载: 导出CSV

    表  4  验证结果

    Table  4.   Verified result

    下载: 导出CSV
  • [1] 严忠贞, 严新平, 马枫, 等. 绿色长江航运智能化信息服务系统及其关键技术研究[J]. 交通信息与安全, 2010, 28 (6): 76-81. doi: 10.3963/j.ISSN1674-4861.2010.06.021

    YAN Zhong-zhen, YAN Xin-ping, MA Feng, et al. Green Yangtze River intelligent shipping information system and its key technologies[J]. Journal of Transport Information and Safety, 2010, 28 (6): 76-81. (in Chinese). doi: 10.3963/j.ISSN1674-4861.2010.06.021
    [2] 马枫, 严新平, 初秀民. 船舶自动识别系统性能半实物仿真方法研究[J]. 系统仿真学报, 2013, 25 (6): 1315-1320. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201306029.htm

    MA Feng, YAN Xin-ping, CHU Xiu-min. Research on automatic identify system performance with hardware-in-the-loop simulation[J]. Journal of System Simulation, 2013, 25 (6): 1315-1320. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201306029.htm
    [3] 陶立敏, 许昌如. 自动识别系统(AIS) 基站的组网研究[J]. 航海技术, 2004 (4): 31-33. doi: 10.3969/j.issn.1006-1738.2004.04.018

    TAO Li-min, XU Chang-ru. Study of the AIS netting[J]. Marine Technology, 2004 (4): 31-33. (in Chinese). doi: 10.3969/j.issn.1006-1738.2004.04.018
    [4] VESECKY J F, LAWS K E, PADUAN J D. Using HF surface wave radar and the ship automatic identification system (AIS) to monitor coastal vessels[C]∥IEEE. 2009IEEE International Geoscience and Remote Sensing Symposium. Cape Town: IEEE, 2009: 761-764.
    [5] LARSEN J A, MORTENSEN H P, NIELSEN J D. An SDR based AIS receiver for satellites[C]∥IEEE. 2011 5 th International Conference on Recent Advances in Space Technologies (RAST). Istanbul: IEEE, 2011: 526-531.
    [6] 马枫, 初秀民, 严新平. AIS基站短消息特性[J]. 交通运输工程学报, 2012, 12 (6): 111-118. doi: 10.3969/j.issn.1671-1637.2012.06.017

    MA Feng, CHU Xiu-min, YAN Xin-ping. Short message characteristics of AIS base stations[J]. Journal of Traffic and Transportation Engineering, 2012, 12 (6): 111-118. (in Chinese). doi: 10.3969/j.issn.1671-1637.2012.06.017
    [7] 马枫, 初秀民, 严新平. 内河AIS船台自适应发射功率调节技术[J]. 中国航海, 2013, 36 (1): 28-34. doi: 10.3969/j.issn.1000-4653.2013.01.007

    MA Feng, CHU Xiu-min, YAN Xin-ping. Self-adaptive transmission power adjustment technology for inland river AIS terminals[J]. Navigation of China, 2013, 36 (1): 28-34. (in Chinese). doi: 10.3969/j.issn.1000-4653.2013.01.007
    [8] 马枫, 严新平, 初秀民, 等. 船舶自动识别系统信号失效与场强的相关性[J]. 大连海事大学学报, 2011, 37 (3): 111-114. doi: 10.3969/j.issn.1671-7031.2011.03.028

    MA Feng, YAN Xin-ping, CHU Xiu-min, et al. Correlation between signal failure and field strength in automatic identify system[J]. Journal of Dalian Maritime University, 2011, 37 (3): 111-114. (in Chinese). doi: 10.3969/j.issn.1671-7031.2011.03.028
    [9] 宋成果. 基于虚拟现实的内河航道航标布设的仿真研究[D]. 武汉: 武汉理工大学, 2012.

    SONG Cheng-guo. Research of the inland waterway aids to navigation layout simulation based on virtual reality[D]. Wuhan: Wuhan University of Technology, 2012. (in Chinese).
    [10] 王祖良, 樊文生, 郑林华. 海面电波传播损耗模型研究与仿真[J]. 电波科学学报, 2008, 23 (6): 1095-1099. doi: 10.3969/j.issn.1005-0388.2008.06.015

    WANG Zu-liang, FAN Wen-sheng, ZHENG Lin-hua. Study and simulation on sea-surface propagation prediction model[J]. Chinese Journal of Radio Science, 2008, 23 (6): 1095-1099. (in Chinese). doi: 10.3969/j.issn.1005-0388.2008.06.015
    [11] 吴青, 崔建平, 马枫, 等. 基于奥村模型的内河AIS基站监测范围研究[J]. 武汉理工大学学报: 信息与管理工程版, 2011, 33 (1): 36-39. https://www.cnki.com.cn/Article/CJFDTOTAL-WHQC201101010.htm

    WU Qing, CUI Jian-ping, MA Feng, et al. Research of monitoring scope of inland AIS base station based on Okumura-Hata model[J]. Journal of Wuhan University of Technology: Information and Management Engineering, 2011, 33 (1): 36-39. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WHQC201101010.htm
    [12] 胡绘斌. 预测复杂环境下电波传播特性的算法研究[D]. 长沙: 国防科学技术大学, 2006.

    HU Hui-bin. Prediction study on the algorithm of radio waves propagation characteristics under complicated environment[D]. Changsha: National University of Defense Technology, 2006. (in Chinese).
    [13] HASEGAEA K, NIWA K, MORI S, et al. Simulation-based master plan design and its safety assessment for congested waterways managements[C]∥Shanghai Jiaotong University. 2 nd International Maritime Conference on Design for Safety. Shanghai: Shanghai Jiaotong University, 2004: 265-269.
    [14] HATA K, HASEGAWA K, NIWA K, et al. AIS simulator and ITS applications[C]∥IEEE. 48 th International Symposium ELMAR-2006. Zadar: IEEE, 2006: 223-226.
    [15] 闫岩, 王蔷, 杜正伟. 超宽带信号室内场强分布[J]. 电子技术应用, 2005, 31 (9): 54-57. https://www.cnki.com.cn/Article/CJFDTOTAL-DZJY200509019.htm

    YAN Yan, WANG Qiang, DU Zheng-wei. UMB signal indoor electric field distribution[J]. Application of Electronic Technique, 2005, 31 (9): 54-57. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DZJY200509019.htm
    [16] 毋河海. S形分布的数据拟合数学模型研究[J]. 武汉大学学报: 信息科学版, 2009, 34 (4): 474-478. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200904024.htm

    WU He-hai. Study of mathematic model for fitting S shape distributed data[J]. Geomatics and Information Science of Wuhan University, 2009, 34 (4): 474-478. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200904024.htm
    [17] 毋河海. 数字曲线拐点的自动确定[J]. 武汉大学学报: 信息科学版, 2003, 28 (3): 330-335. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200303014.htm

    WU He-hai. Automatic determination of inflection point and its applications[J]. Geomatics and Information Science of Wuhan University, 2003, 28 (3): 330-335. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200303014.htm
    [18] 孙星, 吴勇, 初秀民. 船-标-岸协同下智能长江航运及其发展展望[J]. 交通信息与安全, 2010, 28 (6): 48-52, 56. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201006016.htm

    SUN Xing, WU Yong, CHU Xiu-min. Intelligent Yangtze River shipping and ITS prospects based on coordination of ship-markbank[J]. Journal of Transport Information and Safety, 2010, 28 (6): 48-52, 56. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201006016.htm
    [19] 徐建闽, 林思, 焦光庭, 等. 大交通模式下的ITS体系框架研究[J]. 交通信息与安全, 2009, 27 (2): 1-4, 50. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS200902003.htm

    XU Jian-min, LIN Si, JIAO Guang-ting, et al. ITS architecture of general communications[J]. Journal of Transport Information and Safety, 2009, 27 (2): 1-4, 50. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS200902003.htm
    [20] 季忠, 黎滨洪, 王豪行, 等. 一种高效的室内射线跟踪传播预测模型[J]. 上海交通大学学报, 2000, 34 (2): 276-280. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT200002031.htm

    JI Zhong, LI Bin-hong, WANG Hao-xing, et al. An effective propagation estimation model for indoor radio communications using ray tracing technique[J]. Journal of Shanghai Jiaotong University, 2000, 34 (2): 276-280. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT200002031.htm
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  710
  • HTML全文浏览量:  150
  • PDF下载量:  740
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-03
  • 刊出日期:  2014-12-25

目录

    /

    返回文章
    返回