留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机场道面及其下部地基脱空的测试方法

张宇辉 张献民

张宇辉, 张献民. 机场道面及其下部地基脱空的测试方法[J]. 交通运输工程学报, 2016, 16(6): 1-11.
引用本文: 张宇辉, 张献民. 机场道面及其下部地基脱空的测试方法[J]. 交通运输工程学报, 2016, 16(6): 1-11.
ZHANG Yu-hui, ZHANG Xian-min. Test methods of airport pavement and subjacent foundation void[J]. Journal of Traffic and Transportation Engineering, 2016, 16(6): 1-11.
Citation: ZHANG Yu-hui, ZHANG Xian-min. Test methods of airport pavement and subjacent foundation void[J]. Journal of Traffic and Transportation Engineering, 2016, 16(6): 1-11.

机场道面及其下部地基脱空的测试方法

基金项目: 

国家自然科学基金项目 60879021

中央高校基本科研业务费专项资金项目 3122014D028

中国民航大学科研启动基金项目 2012QD24x

中国民航大学省部级科研机构开放基金项目 JCGC2016KFJJ003

详细信息
    作者简介:

    张宇辉(1984-), 男, 山西吕梁人, 中国民航大学讲师, 工学博士, 从事机场工程研究

  • 中图分类号: U416

Test methods of airport pavement and subjacent foundation void

More Information
  • 摘要: 分析了机场跑道重锤式弯沉仪、探地雷达、面波与映像的测试结果, 判别了机场刚性道面板底部脱空、下部地基沉陷与地基空洞变形, 对比了不同脱空深度和位置下的波谱特点, 研究了基于应力波与电磁波的道面脱空测试方法的有效性与优越性, 并对测试精度进行现场钻芯验证。验证结果表明: 传统重锤式弯沉仪测试数据为道面表层荷载位移, 无法反映跑道道面板底部土基沉陷变形与脱空缺陷; 面波测试深度较大, 采样数据可反映道面板下部地基变形与脱空状态; 映像方法测试道面板底部反射波性状, 可实现对道面板结构层底部脱空的判定; 以上3种测试方法均为间隔采样, 受采样点数目限制, 对跑道整体状态代表性不足, 无法克服由采样点间距导致的评价误差; 探地雷达测试方法可实现连续状态测试, 测试范围覆盖率为100%, 且雷达测试数据与传统测试数据符合率为95%, 并经8样本点钻芯试验验证孔底脱空测试精度为87.5%, 但雷达测试结果对脱空的量化分析不足, 需依托面波测试与映像测试结果对脱空测试结果进行有效验证。

     

  • 图  1  瞬态面波测试原理

    Figure  1.  Testing principle of transient surface wave

    图  2  雷达工作原理

    Figure  2.  Radar working principle

    图  3  雷达电磁反射波传播路径

    Figure  3.  Propagation paths of radar electromagnetic reflected waves

    图  4  跑道结构

    Figure  4.  Runway structure

    图  5  跑道测线

    Figure  5.  Test lines of runway

    图  6  雷达测线

    Figure  6.  Test lines of radar

    图  7  测线1的雷达图谱1

    Figure  7.  First radar figure of test line 1

    图  8  测线1的雷达图谱2

    Figure  8.  Second radar figure of test line 2

    图  9  测线1的雷达图谱3

    Figure  9.  Third radar figure of test line 3

    图  10  测线1的雷达图谱4

    Figure  10.  Fourth radar figure of test line 4

    图  11  测线1的雷达图谱5

    Figure  11.  Fifth radar figure of test line 5

    图  12  测线2的雷达图谱1

    Figure  12.  First radar figure of test line 1

    图  13  测线2的雷达图谱2

    Figure  13.  Second radar figure of test line 2

    图  14  测线2的雷达图谱3

    Figure  14.  Third radar figure of test line 3

    图  15  测线2的雷达图谱4

    Figure  15.  Fourth radar figure of test line 4

    图  16  剪切波速色谱

    Figure  16.  Chromatogram of shear wave velocity

    图  17  1号测线振动映像时域波形

    Figure  17.  Time domain waveform of vibration image for test line 1

    图  18  2号测线振动映像时域波形

    Figure  18.  Time domain waveform of vibration image for test line 2

    图  19  HWD测线布置

    Figure  19.  Test line layout of HWD

    图  20  第1组测线的HWD测试数据

    Figure  20.  HWD test data of the first group test lines

    图  21  第2组测线的HWD测试数据

    Figure  21.  HWD test data of the second group test lines

    表  1  1号测线测试数据

    Table  1.   Test data of test line 1

    下载: 导出CSV

    表  2  2号测线测试数据

    Table  2.   Test data of test line 2

    下载: 导出CSV

    表  3  场道地基剪切波速分布

    Table  3.   Distribution of shear wave velocity in pavement foundation

    下载: 导出CSV

    表  4  振动映像分析的脱空位置

    Table  4.   Void positions from analysis of vibration image

    下载: 导出CSV

    表  5  HWD脱空测试结果

    Table  5.   Void test result of HWD

    下载: 导出CSV

    表  6  钻芯测试脱空结果

    Table  6.   Void result of core-drilling test

    下载: 导出CSV
  • [1] 朱才辉, 李宁. 黄土高填方地基中暗穴扩展对机场道面变形分析[J]. 岩石力学与工程学报, 2015, 34(1): 198-206. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201501022.htm

    ZHU Cai-hui, LI Ning. Analysis of airstrip deformation due to expansion of hidden cavities in loess filled high embankment[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(1): 198-206. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201501022.htm
    [2] 刘军忠, 翁兴中, 张俊, 等. 应急机场土质道面疲劳变形特性模型试验[J]. 西南交通大学学报, 2014, 49(3): 412-418. doi: 10.3969/j.issn.0258-2724.2014.03.007

    LIU Jun-zhong, WENG Xing-zhong, ZHANG Jun, et al. Model experiment of fatigue deformation characteristic of emergency soil airfield pavement[J]. Journal of Southwest Jiaotong University, 2014, 49(3): 412-418. (in Chinese). doi: 10.3969/j.issn.0258-2724.2014.03.007
    [3] PURYEAR C I, CASTAGNA J P. Layer-thickness determination and stratigraphic interpretation using spectral inversion: theory and application[J]. Geophysics, 2008, 73(2): 37-48. doi: 10.1190/1.2838274
    [4] ZHOU Yue-feng, THAM L G, YAN R W M, et al. The mechanism of soil failures along cracks subjected to water infiltration[J]. Computers and Geosciences, 2014, 55(2): 330-341.
    [5] 敦晓, 岑国平, 黄灿华, 等. 机场道面混凝土冻融破坏评价指标[J]. 交通运输工程学报, 2010, 10(1): 13-18. doi: 10.3969/j.issn.1671-1637.2010.01.003

    DUN Xiao, CEN Guo-ping, HUANG Can-hua, et al. Evaluation indices of freezing-thawing destruction for airfield runway concrete[J]. Journal of Traffic and Transportation Engineering, 2010, 10(1): 13-18. (in Chinese). doi: 10.3969/j.issn.1671-1637.2010.01.003
    [6] 王观虎, 蔡良才, 邵斌, 等. 机场水泥混凝土道面使用寿命的改进灰色预测模型[J]. 交通运输工程学报, 2009, 9(3): 45-50. doi: 10.3321/j.issn:1671-1637.2009.03.008

    WANG Guan-hu, CAI Liang-cai, SHAO Bin, et al. Modified gray prediction model of service life for airport cement concrete pavement[J]. Journal of Traffic and Transportation Engineering, 2009, 9(3): 45-50. (in Chinese). doi: 10.3321/j.issn:1671-1637.2009.03.008
    [7] 蔡良才, 王海服, 张罗利, 等. 基于累积损伤的机场道面剩余寿命预测模型[J]. 交通运输工程学报, 2014, 14(4): 1-6. http://transport.chd.edu.cn/article/id/201404001

    CAI Liang-cai, WANG Hai-fu, ZHANG Luo-li, et al. Prediction model of remaining life for airport pavement based on cumulative damage[J]. Journal of Traffic and Transportation Engineering, 2014, 14(4): 1-6. (in Chinese). http://transport.chd.edu.cn/article/id/201404001
    [8] 谢春庆, 李天华, 徐鸿彪. 某机场道面脱空原因与处治措施[J]. 路基工程, 2012(1): 181-184, 187. doi: 10.3969/j.issn.1003-8825.2012.01.052

    XIE Chun-qing, LI Tian-hua, XU Hong-biao. Genesis analysis of foundation void under an airport runway and its treatment[J]. Subgrade Engineering, 2012(1): 181-184, 187. (in Chinese). doi: 10.3969/j.issn.1003-8825.2012.01.052
    [9] 张强. 机场复合道面HWD弯沉的温度修正方法[J]. 西部交通科技, 2012(11): 61-65. doi: 10.3969/j.issn.1673-4874.2012.11.020

    ZHANG Qiang. Temperature correction method of HWD deflection in airport composite road surface[J]. Western China Communications Science and Technology, 2012(11): 61-65. (in Chinese). doi: 10.3969/j.issn.1673-4874.2012.11.020
    [10] 谭悦, 凌建明, 袁捷, 等. 脱空对机场水泥混凝土道面荷载应力的影响[J]. 同济大学学报: 自然科学版, 2010, 38(4): 552-556, 568. doi: 10.3969/j.issn.0253-374x.2010.04.015

    TAN Yue, LING Jian-ming, YUAN Jie, et al. Influence of voids to loading stresses of airport cement concrete pavement[J]. Journal of Tongji University: Natural Science, 2010, 38(4): 552-556, 568. (in Chinese). doi: 10.3969/j.issn.0253-374x.2010.04.015
    [11] 付代光, 刘江平, 周黎明, 等. 基于贝叶斯理论的软夹层多模式瑞雷波频散曲线反演研究[J]. 岩土工程学报, 2015, 37(2): 321-329. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201502020.htm

    FU Dai-guang, LIU Jiang-ping, ZHOU Li-ming, et al. Inversion of multimode Rayleigh-wave dispersion curves of soft interlayer based on Bayesian theory[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 321-329. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201502020.htm
    [12] 刘远, 孙进忠, 赵体, 等. 强夯地基处理效果的多道瞬态瑞雷波检测[J]. 地球物理学进展, 2014, 29(6): 2910-2916. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201406063.htm

    LIU Yuan, SUN Jin-zhong, ZHAO Ti, et al. Quantitative evaluation of dynamic consolidation effect of foundation based on multi-channel transient Rayleigh wave method[J]. Progress in Geophysics, 2014, 29(6): 2910-2916. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201406063.htm
    [13] LI Cui-lin, DOSSO S E, DONG He-feng, et al. Bayesian inversion of multimode interface-wave dispersion from ambient noise[J]. IEEE Journal of Oceanic Engineering, 2012, 37(3): 407-416. doi: 10.1109/JOE.2012.2189922
    [14] 李文灵, 黄真萍, 王福喜, 等. 瞬态面波与微震波波动勘测法的分析与对比[J]. 工程地球物理学报, 2015, 12(1): 96-100. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDQ201501019.htm

    LI Wen-ling, HUANG Zhen-ping, WANG Fu-xi, et al. The comparison between transient surface wave and micro-seismic wave exploration technology[J]. Chinese Journal of Engineering Geophysics, 2015, 12(1): 96-100. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDQ201501019.htm
    [15] PRIOLO E. Earthquake ground motion simulation through the 2-D spectral element method[J]. Journal of Computational Acoustics, 2001, 9(4): 1561-1581.
    [16] MACIAS C C, LUKE B. Improved parameterization to invert Rayleigh-wave data for shallow profiles containing stiff inclusions[J]. Geophysics, 2007, 72(1): 1-10.
    [17] 杨鸿凯, 车爱兰, 汤政, 等. 基于弹性波理论的高铁线下结构病害快速检测方法[J]. 上海交通大学学报, 2015, 49(7): 1010-1009, 1016. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201507017.htm

    YANG Hong-kai, CHE Ai-lan, TANG Zheng, et al. Elasticwave-based detection method for under line structure of highspeed railway[J]. Journal of Shanghai Jiaotong University, 2015, 49(7): 1010-1009, 1016. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201507017.htm
    [18] 李炜光, 郑敏楠, 连城. 新型机场道面雾封层材料性能及施工技术研究[J]. 筑路机械与施工机械化, 2015, 32(11): 75-78, 83. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX201511031.htm

    LI Wei-guang, ZHENG Min-nan, LIAN Cheng. Research on properties and construction technology of new material for fog seal coat of airport pavement[J]. Road Machinery and Construction Mechanization, 2015, 32(11): 75-78, 83. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX201511031.htm
    [19] 肖都. 沥青混凝土机场跑道面层脱空探地雷达图像模拟及应用研究[J]. 物探化探计算技术, 2015, 37(1): 10-15. https://www.cnki.com.cn/Article/CJFDTOTAL-WTHT201501002.htm

    XIAO Du. Applied techniques of GPR simulation and survey for asphalt overlay debonding on runway[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2015, 37(1): 10-15. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WTHT201501002.htm
    [20] 何炜琨. 基于探地雷达的机场场道质量监测关键技术研究[D]. 天津: 天津大学, 2012.

    HE Wei-kun. Enabling techniques for runways quality surveillence via ground penetrating radar[D]. Tianjin: Tianjin University, 2012. (in Chinese).
    [21] 罗伟国. 基于探地雷达的沥青路面隐性探伤应用技术研究[D]. 西安: 长安大学, 2014.

    LUO Wei-guo. Research and application of asphalt pavement hidden flaw detection based on GPR technology[D]. Xi'an: Chang'an University, 2014. (in Chinese).
    [22] GIANNOPOULOS A. Modeling ground penetrating radar by GprMax[J]. Construction and Building Materials, 2005, 19(10): 755-762.
    [23] GAUNAURD G C, NGUYEN L H. Detection of landmines using ultra-wideband radar data and time-frequency signal analysis[J]. IEE Proceedings—Radar, Sonar and Navigation, 2004, 151(5): 307-316.
    [24] 刘宗辉, 吴恒, 周东, 等. 频谱反演法在探地雷达隧道衬砌检测中的应用研究[J]. 岩土工程学报, 2015, 37(4): 711-717. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201504020.htm

    LIU Zong-hui, WU Heng, ZHOU Dong, et al. Application of spectrum inversion method in GPR signal processing for tunnel lining detection[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 711-717. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201504020.htm
    [25] 黄忠来, 张建中. 利用探地雷达频谱反演层状介质几何与电性参数[J]. 地球物理学报, 2013, 56(4): 1381-1391. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201304034.htm

    HUANG Zhong-lai, ZHANG Jian-zhong. An inversion method for geometric and electric parameters of layered media using spectrum of GPR signal[J]. Chinese Journal of Geophysics, 2013, 56(4): 1381-1391. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201304034.htm
  • 加载中
图(21) / 表(6)
计量
  • 文章访问数:  3665
  • HTML全文浏览量:  160
  • PDF下载量:  2923
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-01
  • 刊出日期:  2016-12-25

目录

    /

    返回文章
    返回