-
摘要: 利用室内大型循环直剪仪进行了一系列筋土界面循环剪切试验, 筋材采用土工编织布和无纺土工布, 土体采用中国ISO标准砂, 在竖向应力分别为30、60、90 kPa, 剪切位移幅值分别为1、3、5 mm, 砂土密实度分别为22%、52%、75%时, 研究了竖向应力、剪切位移幅值、砂土密实度对筋土界面循环剪切特性的影响, 分析了循环剪切过程中2种土工布与砂土界面的剪切应力峰值和剪切应力-剪切位移的变化规律。研究结果表明: 2种土工布与砂土界面均会发生循环剪切软化现象, 但软化规律不同; 竖向应力从30 kPa增大到90 kPa时, 土工编织布与砂土界面循环剪切应力峰值增大了72.9%, 无纺土工布与砂土界面循环剪切应力峰值增加了167.5%, 表明竖向应力对土工编织布与砂土界面的循环剪切特性影响明显; 剪切位移幅值分别为1、3、5 mm时, 土工编织布与砂土界面剪切应力峰值分别为25.9、27.9、29.8 kPa, 无纺土工布与砂土界面剪切应力峰值分别为21.8、23.8、22.6 kPa, 表明随着剪切位移幅值增大, 土工编织布与砂土界面剪切应力峰值随之增大, 而无纺土工布与砂土界面剪切应力峰值先增大后减小; 在3种砂土密实度下, 土工编织布与砂土界面剪切应力峰值之间的最大差值不超过2 kPa, 无纺土工布与砂土界面剪切应力峰值之间的最大差值不超过3 kPa, 表明砂土密实度对2种土工布与砂土界面的循环剪切特性影响不明显。Abstract: A series of cyclic direct shear tests of soil-reinforcement interfaces were performed by using a large-scale direct shear device.Woven geotextile and nonwoven geotextile were used as reinforcement materials.Chinese ISO standard sand was used as soil mass.When the vertical stresses are 30, 60 and 90kPa respectively, the cyclic shear displacement amplitudes are 1, 3and5 mm respectively, and the sandy soil densities are 22%, 52% and 75% respectively, theirinfluences on the cyclic shear properties of soil-reinforcement interfaces were studied, and the development laws of peak shear stresses and the relationships of shear stresses and shear displacements in the processes of cyclic shear tests on two kinds of geotextile-sandy soil interfaces were analyzed.Study result indicates that the cyclic shear softening phenomena appear on woven/nonwoven geotextile-sand interfaces, and the softening laws are different.When the vertical stress increases from 30 kPa to 90 kPa, the peak shear stress of woven geotextile-sandy soil interface increases by 72.9%, and the peak shear stress of nonwoven geotextile-sand interface increases by 167.5%, so the influence of vertical stress on the cyclic shear properties of geotextile-sandy soil interface is obvious.When the shear displacement amplitudes are 1, 3and5 mm respectively, the peak shear stresses of woven geotextile-sandy soil interface are 25.9, 27.9and 29.8kPa respectively, and the peak shear stresses of nonwoven geotextile-sandy soil interface are 21.8, 23.8and 22.6kPa respectively, which shows that the peak shear stress of woven geotextile-sandy soil interface increases with the increase of shear displacement amplitude, while the peak shear stress of nonwoven geotextile-sandy soil interface firstly increases and then decreases.Under the three sandy soil densities, the differences among the peak shear stresses of woven geotextile-sandy soil interface do not exceed 2kPa, and the differences among the peak shear stresses of nonwoven geotextile-sandy soil interface do not exceed 3kPa, which shows that the sandy soil density has no significant influence on the cyclic shear properties of woven/nonwoven geotextile-sandy soil interfaces.
-
Key words:
- soil-reinforcement interface /
- geotextile /
- cyclic shear /
- shear displacement amplitude /
- density
-
表 1 土工布技术指标
Table 1. Technical indices of geotextiles
表 2 砂土的物理性质
Table 2. Physical properties of sandy soil
表 3 循环剪切试验方案
Table 3. Cyclic shear testing programs
-
[1] 吴景海, 陈环, 王玲娟, 等. 土工合成材料与土界面作用特性的研究[J]. 岩土工程学报, 2001, 23(1): 89-93. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200101020.htmWU Jing-hai, CHEN Huan, WANG Ling-juan, et al. Study on soil interaction characteristics of geosynthetics[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(1): 89-93. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200101020.htm [2] WASTI Y, ÖZDÜZGÜN Z B. Geomembrane-geotextile interface shear properties as determined by inclined board and direct shear box tests[J]. Geotextiles and Geomembranes, 2001, 19(1): 45-57. doi: 10.1016/S0266-1144(00)00002-9 [3] 刘炜, 汪益敏, 陈页开, 等. 土工格室加筋土的大尺寸直剪试验研究[J]. 岩土力学, 2008, 29(11): 3133-3138, 3160. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200811053.htmLIU Wei, WANG Yi-min, CHEN Ye-kai, et al. Research on large scale direct shear test for geocell reinforced soil[J]. Rock and Soil Mechanics, 2008, 29(11): 3133-3138, 3160. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200811053.htm [4] LIU C N, HO Y H, HUANG J W. Large scale direct shear tests of soil/PET-yarn geogrid interfaces[J]. Geotextiles and Geomembranes, 2009, 27(1): 19-30. doi: 10.1016/j.geotexmem.2008.03.002 [5] FOX P J, ROSS J D, SURA J M, et al. Geomembrane damage due to static and cyclic shearing over compacted gravelly sand[J]. Geosynthetics International, 2011, 18(5): 272-279. doi: 10.1680/gein.2011.18.5.272 [6] 李建, 唐朝生, 王德银, 等. 基于单根纤维拉拔试验的波形纤维加筋土界面强度研究[J]. 岩土工程学报, 2014, 36(9): 1696-1704. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201409022.htmLI Jian, TANG Chao-sheng, WANG De-yin, et al. Single fiber pullout tests on interfacial shear strength of wave-shape fiber-reinforced soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1696-1704. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201409022.htm [7] 施建勇, 钱学德, 朱月兵. 垃圾填埋场土工合成材料的界面特性试验方法研究[J]. 岩土工程学报, 2010, 32(5): 688-692. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201005008.htmSHI Jian-yong, QIAN Xue-de, ZHU Yue-bing. Experimental methods for interface behaviors of geosynthetics in landfills[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5): 688-692. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201005008.htm [8] LIU C N, ZORNBERG J G, CHEN T C, et al. Behavior of geogrid-sand interface in direct shear mode[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(12): 1863-1871. doi: 10.1061/(ASCE)GT.1943-5606.0000150 [9] MORACI N, CARDILE G. Influence of cyclic tensile loading on pullout resistance of geogrids embedded in a compacted granular soil[J]. Geotextiles and Geomembranes, 2009, 27(6): 475-487. doi: 10.1016/j.geotexmem.2009.09.019 [10] 周健, 王家全, 孔祥利, 等. 砂土颗粒与土工合成材料接触界面细观研究[J]. 岩土工程学报, 2010, 32(1): 61-67. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201001012.htmZHOU Jian, WANG Jia-quan, KONG Xiang-li, et al. Mesoscopic study of the interface between sandy soil and geosynthetics[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1): 61-67. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201001012.htm [11] BRIANCON L, GIRARD H, GOURC J P. A new procedure for measuring geosynthetic friction with an inclined plane[J]. Geotextiles and Geomembranes, 2011, 29(5): 472-482. doi: 10.1016/j.geotexmem.2011.04.002 [12] EID H T. Shear strength of geosynthetic composite systems for design of landfill liner and cover slopes[J]. Geotextiles and Geomembranes, 2011, 29(3): 335-344. doi: 10.1016/j.geotexmem.2010.11.005 [13] LEE K M, MANJUNATH V R. Soil-geotextile interface friction by direct shear tests[J]. Canadian Geotechnical Journal, 2000, 37(1): 238-252. doi: 10.1139/t99-124 [14] ABU-FARSAKH M, CORONEL J, TAO Ming-jiang. Effect of soil moisture content and dry density on cohesive soilgeosynthetic interactions using large direct shear tests[J]. Journal of Materials in Civil Engineering, 2007, 19(7): 540-549. doi: 10.1061/(ASCE)0899-1561(2007)19:7(540) [15] ANUBHAV S, BASUDHAR P K. Modeling of soil-woven geotextile interface behavior from direct shear test results[J]. Geotextiles and Geomembranes, 2010, 28(4): 403-408. [16] KHOURY C N, MILLER G A, HATAMI K. Unsaturated soil-geotextile interface behavior[J]. Geotextiles and Geomembranes, 2011, 29(1): 17-28. [17] TUNA S C, ALTUN S. Mechanical behaviour of sandgeotextile interface[J]. Scientia Iranica, 2012, 19(4): 1044-1051. [18] VIEIRA C S, LOPES M L, CALDEIRA L M. Sand-geotextile interface characterisation through monotonic and cyclic direct shear tests[J]. Geosynthetics International, 2013, 20(1): 26-38. [19] SAYEED M M A, RAMAIAH B J, RAWAL A. Interface shear characteristics of jute/polypropylene hybrid nonwoven geotextiles and sand using large size direct shear test[J]. Geotextiles and Geomembranes, 2014, 42(1): 63-68. [20] 刘飞禹, 林旭, 王军. 砂土颗粒级配对筋土界面抗剪特性的影响[J]. 岩石力学与工程学, 2013, 32(12): 2575-2582. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201312026.htmLIU Fei-yu, LIN Xu, WANG Jun. Influence of particle-size gradation on shear behavior of geosynthetics and sand interface[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(12): 2575-2582. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201312026.htm [21] LIU Fei-yu, WANG Pan, GENG Xue-yu, et al. Cyclic and post-cyclic behaviour from sand-geogrid interface large-scale direct shear tests[J]. Geosynthetics International, 2016, 23(2): 129-139. [22] 刘飞禹, 林旭, 王军, 等. 循环剪切作用对格栅与砂土界面剪切特性的影响[J]. 中国公路学报, 2015, 28(2): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201502002.htmLIU Fei-yu, LIN Xu, WANG Jun, et al. Effect of cyclic shear load on behavior of sand-geogrid interface[J]. China Journal of Highway and Transport, 2015, 28(2): 1-7. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201502002.htm [23] 王军, 王攀, 刘飞禹, 等. 密实度不同时格栅-砂土界面循环剪切及其后直剪特性[J]. 岩土工程学报, 2016, 38(2): 342-349. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201602023.htmWANG Jun, WANG Pan, LIU Fei-yu, et al. Cyclic and postcyclic direct shear behavior of geogrid-sand interface with different soil densities[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 342-349. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201602023.htm [24] WANG Jun, LIU Fei-yu, WANG Pan, et al. Particle size effects on coarse soil-geogrid interface response in cyclic and post-cyclic direct shear tests[J]. Geotextiles and Geomembranes, 2016, 44(6): 854-861. [25] 苏志和, 许英明. 土工布在处治旧水泥混凝土路面补强中的应用[J]. 筑路机械与施工机械化, 2007, 24(1): 30-32. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX200701016.htmSU Zhi-he, XU Ying-ming. Application of geotextile in strengthening of old cement road[J]. Road Machinery and Construction Mechanization, 2007, 24(1): 30-32. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX200701016.htm