-
摘要: 在研究电动汽车驱动电机参数匹配过程中, 提出了一种驱动电机结构参数优化设计方法。在已知电机基本参数基础上, 分析了电机轴向长度、转子外径、绕组匝数、线径、极弧因数、永磁体厚度等参数对电机效率的影响。建立了电机主要本体结构参数与效率特性的映射关系, 提出了电机本体结构参数的初始设计和优化设计流程。利用优化设计得到的电机效率特性, 通过正向仿真整车模型, 在4种典型工况下进行了整车的经济性仿真验证。仿真结果表明: 在外特性方面, 优化电机相比初始电机的转矩脉动明显降低, 其中恒转矩区域降低为14%, 恒功率区域不超过40%, 且最高效率提升为94%;在整车经济性方面, 优化电机在NEDC、UDDS、JC08、1015工况使整车单位里程能耗分别降低7.1%、6.7%、4.1%、2.9%, 平均为5.2%。可见, 优化设计方法在满足整车动力性需求的前提下, 改善了电机在高效率区间的工作点分布, 显著提高了电机在高转速、低转矩范围的平均效率; 设计方法能更好地提升电机的驱动效率, 为从整车性能要求出发的电动汽车驱动电机本体结构参数优化设计提供理论指导。Abstract: In the process of parameters matching study of driving motor for electric vehicle, an optimal design method for structural parameters of driving motor was proposed.Based on the basic given motor parameters, the influences of axial length, rotor outer diameter, winding turns, wire diameter, pole arc factor, and permanent magnet thickness on motor efficiency were analyzed.The mapping relationships between the main ontology structural parameters and the efficiency characteristic of the motor were established.The procedures of the preliminary design and the optimal design for the motor ontology structural parameters were proposed.Based on the optimized motor efficiency characteristic, the economic performance of whole vehicle was simulated and verified by using the forward-facing simulation vehicle model under 4typical working conditions.Simulation result shows that in the aspect of output characteristic, compared with the initial motor, the torque ripple of optimized motor reduces obviously, the value in constant torque area reduces to 14%, the value in constant power area reduces to no more than40%, and the top efficiency increases to 94%.In the aspect of whole vehicle economy performance, the energy consumptions per kilometer of optimized motor for whole vehicle reduceby about 7.1%, 6.7%, 4.1%, and 2.9% under NEDC、UDDS、JC08、1015working conditions, and the average value is 5.2%.Under the premise of meeting the driving requirements, the operating point distribution in higher efficiency range is improved, and the average efficiency in the area with higher rotational speed and lower torque rises significantly by using the proposed optimal design method.The design method can better improve the driving efficiency of motor, and can supply the theoretical supervision for the optimal design of driving motor ontology structural parameters according to the requirement of vehicle performance.
-
Key words:
- electric vehicle /
- driving motor /
- ontology design /
- optimal design /
- structural parameter /
- efficiency characteristic
-
表 1 电机主要性能参数
Table 1. Main performance parameters of motor
表 2 电机初始设计结构参数
Table 2. Preliminary design structural parameters of motor
表 3 电机优化设计结构参数
Table 3. Optimal design structural parameters of motor
表 4 整车仿真参数
Table 4. Simulation parameters of whole vehicle
表 5 平均效率与单位里程能耗对比
Table 5. Comparison of average efficiencies and energy consumptions per kilometer
-
[1] 赵轩, 马建, 汪贵平. 基于制动驾驶意图辨识的纯电动客车复合制动控制策略[J]. 交通运输工程学报, 2014, 14(4): 64-75. http://transport.chd.edu.cn/article/id/201404008ZHAO Xuan, MA Jian, WANG Gui-ping. Composite braking control strategy of pure electric bus based on brake driving intention recognition[J]. Journal of Traffic and Transportation Engineering, 2014, 14(4): 64-75. (in Chinese). http://transport.chd.edu.cn/article/id/201404008 [2] 连静, 韩虎, 李琳辉, 等. 基于传动系统效率最优的混合动力汽车控制策略研究[J]. 大连理工大学学报, 2013, 53(5): 666-670. https://www.cnki.com.cn/Article/CJFDTOTAL-DLLG201305008.htmLIAN Jing, HAN Hu, LI Lin-hui, et al. Research on HEV control strategy based on optimal efficiency of drive system[J]. Journal of Dalian University of Technology, 2013, 53(5): 666-670. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLLG201305008.htm [3] EMADI A, LEE Y J, RAJASHEKARA K. Power electronics and motor drives in electric, hybrid electric, and plug-in hybrid electric vehicles[J]. IEEE Transactions on Industrial Electronics, 2008, 55(6): 2237-2245. doi: 10.1109/TIE.2008.922768 [4] LASKARIS K I, KLADAS A G. Internal permanent magnet motor design for electric vehicle drive[J]. IEEE Transactions on Industrial Electronics, 2010, 57(1): 138-145. doi: 10.1109/TIE.2009.2033086 [5] 星野昭広, 磯部真一, 森本雅之, など. 特定用途指向型モータの一設計法[J]. 電気学会論文誌, 2003, 123(11): 1262-1268.HOSHINO A, ISOBE S I, MORIMOTO M, et al. A design procedure for the applications—specific electric motors[J]. IEEJ Transactions on Industry Applications, 2003, 123(11): 1262-1268. [6] 赤津観, 涌井伸二, 有満稔. 要求出力特性を満足する永久磁石同期電動機自動設計手法[J]. 電気学会論文誌, 2004, 124(9): 946-955.AKATSU K, WAKUI S, ARIMITSU M. Automatic design method for PM motor which satisfies the output NT requirements[J]. IEEJ Transactions on Industry Applications, 2004, 124(9): 946-955. [7] SCHOFIELD N, GIRAUD-AUDINE C. Design procedure for brushless PM traction machines for electric vehicle applications[C]//IEEE. Proceedings of 2005 International Conference on Electric Machines and Drives. New York: IEEE, 2005: 1788-1792. [8] 黄万友, 程勇, 纪少波, 等. 变工况下电动汽车驱动系统效率优化控制[J]. 电机与控制学报, 2012, 16(3): 53-59. doi: 10.3969/j.issn.1007-449X.2012.03.009HUANG Wan-you, CHENG Yong, JI Shao-bo, et al. The optimization of EV powertrain's efficiency control strategy under dynamic operation condition[J]. Electric Machines and Control, 2012, 16(3): 53-59. (in Chinese). doi: 10.3969/j.issn.1007-449X.2012.03.009 [9] 李珂, 张承慧, 崔纳新. 电动汽车用感应电机效率优化控制策略的对比研究[C]//IEEE. 第8届智能控制与自动化世界年会论文集. 纽约: IEEE, 2010: 1882-1887.LI Ke, ZHANG Cheng-hui, CUI Na-xin. Comparative study of induction motor efficiency optimization control strategy for electric vehicle[C]//IEEE. Proceedings of 8th World Congress on Intelligent Control and Automation. New York: IEEE, 2010: 1882-1887. (in Chinese). [10] 郭伟, 张承宁. 车用永磁同步电机的铁耗与瞬态温升分析[J]. 电机与控制学报, 2009, 13(1): 83-87, 92. doi: 10.3969/j.issn.1007-449X.2009.01.016GUO Wei, ZHANG Cheng-ning. Iron losses and transient temperature analysis of the permanent magnet synchronous motor for electric vehicles[J]. Electric Machines and Control, 2009, 13(1): 83-87, 92. (in Chinese). doi: 10.3969/j.issn.1007-449X.2009.01.016 [11] 陈阳生, 王文中. 在恒转矩和弱磁控制状态下的各种永磁同步电机负载铁耗[J]. 电工技术学报, 2007, 22(9): 45-50. doi: 10.3321/j.issn:1000-6753.2007.09.009CHEN Yang-sheng, WANG Wen-zhong. Iron loss in PM synchronous motors under constant torque and fieldweakening control[J]. Transactions of China Electrotechnical Society, 2007, 22(9): 45-50. (in Chinese). doi: 10.3321/j.issn:1000-6753.2007.09.009 [12] OKI S, ISHIKAWA S, IKEMI T. Development of high-power and high-efficiency motor for a newly developed electric vehicle[J]. SAE International Journal of Alternative Powertrains, 2012, 5(1): 104-111. [13] SATO Y, ISHIKAWA S, OKUBO T, et al. Development of high response motor and inverter system for the Nissan LEAF electric vehicle[C]//SAE. SAE 2011World Congress and Exhibition. Detroit: SAE International, 2011: 1-8. [14] SHIMIZU H, OKUBO T, HIRANO I, et al. Development of an integrated electrified powertrain for a newly developed electric vehicle[C]//SAE. SAE 2013 World Congress and Exhibition. Detroit: SAE International, 2013: 1-8. [15] NAKADA T, ISHIKAWA S, OKI S. Development of an electric motor for a newly developed electric vehicle[C]//SAE. SAE 2014 World Congress and Exhibition. Detroit: SAE International, 2014: 1-7. [16] ARAI K, HIGASHI K, IIYAMA T, et al. High power density motor and inverter for RWD hybrid vehicles[C]//SAE. SAE 2011 World Congress and Exhibition. Detroit: SAE International, 2011: 9-19. [17] NONAKA T, MAKINO S, HIRAYAMA M, et al. Efficiency evaluation of new variable magnetic flux motor: development of EV motor with wide range high-efficiency drive[C]//SAE. SAE 2011 World Congress and Exhibition. Detroit: SAE International, 2011: 20-23. [18] BERR F L, ABDELLI A, BENLAMINE R. Sensitivity study on the design methodology of an electric vehicle[C]//SAE. SAE 2012 World Congress and Exhibition. Detroit: SAE International, 2012: 1-13. [19] ABDELLI A, BERR F L, BENLAMINE R. Efficient design methodology of an all-electric vehicle powertrain using multiobjective genetic optimization algorithm[C]//SAE. SAE 2013World Congress and Exhibition. Detroit: SAE International, 2013: 9-21. [20] KATO S. Design optimization of interior permanent magnet synchronous motors for HEV and EV[C]//SAE. SAE 2010World Congress and Exhibition. Detroit: SAE International, 2010: 1-8. [21] LAZARI P, WANG Jia-bin, CHEN Liang. A computationally efficient design technique for electric-vehicle traction machines[J]. IEEE Transactions on Industry Applications, 2014, 50(5): 3203-3213. doi: 10.1109/TIA.2014.2304619 [22] WANG Jia-bin, YUAN Xi-bo, ATALLAH K. Design optimization of a surface-mounted permanent-magnet motor with concentrated windings for electric vehicle applications[J]. IEEE Transactions on Vehicular Technology, 2013, 62(3): 1053-1064. doi: 10.1109/TVT.2012.2227867 [23] 吴雪. 纯电动轿车动力系统参数匹配方法研究[D]. 长春: 吉林大学, 2013.WU Xue. Research on powertrain parameters design of pure electric car[D]. Changchun: Jilin University, 2013. (in Chinese). [24] 初亮, 张培志, 林婷婷. 纯电动轿车模式识别及模式切换策略[J]. 华中科技大学学报: 自然科学版, 2014, 42(6): 12-16. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201406003.htmCHU Liang, ZHANG Pei-zhi, LIN Ting-ting. Study on mode recognition and mode switching strategy of electric vehicle[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2014, 42(6): 12-16. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201406003.htm [25] 王军年, 刘德春, 张运昌, 等. 新型双电机构型纯电动汽车节能潜力分析[J]. 吉林大学学报: 工学版, 2016, 46(1): 28-34. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201601005.htmWANG Jun-nian, LIU De-chun, ZHANG Yun-chang, et al. Analysis of energy conservation potential of novel pure electric vehicle with dual motors configuration[J]. Journal of Jilin University: Engineering and Technology Edition, 2016, 46(1): 28-34. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201601005.htm