留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气稳定度对海面人工稀氧区形成的影响

金良安 刘文鹏 高占胜 郑智林

金良安, 刘文鹏, 高占胜, 郑智林. 大气稳定度对海面人工稀氧区形成的影响[J]. 交通运输工程学报, 2016, 16(6): 99-106.
引用本文: 金良安, 刘文鹏, 高占胜, 郑智林. 大气稳定度对海面人工稀氧区形成的影响[J]. 交通运输工程学报, 2016, 16(6): 99-106.
JIN Liang-an, LIU Wen-peng, GAO Zhan-sheng, ZHENG Zhi-lin. Influence of atmospheric stability on formation of artificial anoxic area over sea surface[J]. Journal of Traffic and Transportation Engineering, 2016, 16(6): 99-106.
Citation: JIN Liang-an, LIU Wen-peng, GAO Zhan-sheng, ZHENG Zhi-lin. Influence of atmospheric stability on formation of artificial anoxic area over sea surface[J]. Journal of Traffic and Transportation Engineering, 2016, 16(6): 99-106.

大气稳定度对海面人工稀氧区形成的影响

基金项目: 

“十二五”国防预研项目 5131402031

“十二五”国防预研项目 4010403010208

详细信息
    作者简介:

    金良安(1966-), 男, 浙江黄岩人, 海军大连舰艇学院教授, 工学博士, 从事船舶安全保障与防护研究

  • 中图分类号: U698.2

Influence of atmospheric stability on formation of artificial anoxic area over sea surface

More Information
    Author Bio:

    JIN Liang-an(1966-), male, professor, PhD, +86-411-80855581, hylaohj@163.com

  • 摘要: 针对水中释放气体形成的特定稀氧区, 利用MATLAB和高斯烟羽模型模拟分析了6种大气稳定度等级(A~F)下不同位置的气体浓度变化情况, 绘制了相应的等浓度曲线和曲面, 给出了大气稳定度对稀氧区形成的具体影响规律。分析结果表明: 连续点源的几何高度为0, 抬升高度近似为0, 有效源高度近似为0;在同一下风向距离处与海面同一位置处, 气体浓度从低到高对应的大气稳定度等级依次为A~F; 等浓度曲线覆盖面积、等浓度曲面覆盖区域从小到大对应的大气稳定度等级依次为A~F。可见, 随着大气稳定度的提高, 气体的停留时间增加, 浓度升高, 贴近海面扩散的趋势明显, 有利于有效半径更大稀氧区的形成和维持。

     

  • 图  1  高斯模型的坐标系

    Figure  1.  Coordinate system of Gaussian model

    图  2  下风向气体浓度

    Figure  2.  Concentrations of downwind gas

    图  3  海面气体浓度

    Figure  3.  Concentrations of sea surface gas

    图  4  大气稳定度等级为D时的等浓度曲线

    Figure  4.  Isoconcentration curves of atmospheric stability class D

    图  5  六种大气稳定度等级下的等浓度曲线

    Figure  5.  Isoconcentration curves of six atmospheric stability classes

    图  6  六种大气稳定度等级下的等浓度曲面

    Figure  6.  Isoconcentration surfaces of six atmospheric stability classes

    图  7  六种大气稳定度等级下的等浓度曲面

    Figure  7.  Isoconcentration surface of each atmospheric stability class

    表  1  Pasquill-Gifford模型的大气稳定度等级

    Table  1.   Atmospheric stability classes of Pasquill-Gifford model

    下载: 导出CSV

    表  2  农村条件下Pasquill-Gifford模型的扩散系数方程

    Table  2.   Diffusion coefficient equations of Pasquill-Gifford model under rural condition

    下载: 导出CSV
  • [1] 文华, 方芳, 萧汉梁. 海运安全评价方法[J]. 交通运输工程学报, 2001, 1(1): 95-98. doi: 10.3321/j.issn:1671-1637.2001.01.024

    WEN Hua, FANG Fang, XIAO Han-liang. The appraisal methods of marine safety[J]. Journal of Traffic and Transportation Engineering, 2001, 1(1): 95-98. (in Chinese). doi: 10.3321/j.issn:1671-1637.2001.01.024
    [2] 张翔宇. 柴油机低温燃烧及排放特性的试验研究[D]. 天津: 天津大学, 2010.

    ZHANG Xiang-yu. The experimental investigation on combustion and emissions of low-temperature combustion of diesel engines[D]. Tianjin: Tianjin University, 2010. (in Chinese).
    [3] TIAN Wen-guo, YE Rong-hua. Effects of excess air on the performance of marine diesel engine[J]. Navigation of China, 2008, 31(1): 57-62.
    [4] 刘文鹏, 金良安, 高占胜. 柴油机过量空气系数的防熄火要求[J]. 安防技术, 2015, 3(1): 1-6.

    LIU Wen-peng, JIN Liang-an, GAO Zhan-sheng. Requirements for the excess air coefficient to avoid flameout in diesel engine[J]. Journal of Security and Safety Technology, 2015, 3(1): 1-6. (in Chinese).
    [5] 金良安, 刘阳娜, 苑志江, 等. 基于海水燃烧的海运安全防护技术[J]. 中国航海, 2013, 36(4): 100-103. doi: 10.3969/j.issn.1000-4653.2013.04.023

    JIN Liang-an, LIU Yang-na, YUAN Zhi-jiang, et al. A new ship protection technique based on burning sea water[J]. Navigation of China, 2013, 36(4): 100-103. (in Chinese). doi: 10.3969/j.issn.1000-4653.2013.04.023
    [6] 刘阳娜, 金良安, 苑志江. 舰船新型水基燃烧防御技术[J]. 舰船科学技术, 2013, 35(10): 138-141. doi: 10.3404/j.issn.1672-7649.2013.10.032

    LIU Yang-na, JIN Liang-an, YUAN Zhi-jiang. Research on a new ship defense technology of water-based combustion[J]. Ship Science and Technology, 2013, 35(10): 138-141. (in Chinese). doi: 10.3404/j.issn.1672-7649.2013.10.032
    [7] LU Hao. Assessment of the modulated gradient model in decaying isotropic turbulence[J]. Theoretical and Applied Mechanics Letters, 2011, 1(4): 1-5.
    [8] MARROUF A A, ESSA K S M, EL-OTAIFY M S, et al. The influence of eddy diffusivity variation on the atmospheric diffusion equation[J]. Open Journal of Air Pollution, 2015, 4(3): 109-118. doi: 10.4236/ojap.2015.43011
    [9] 平措. 大气污染扩散长期模型的应用研究[D]. 天津: 天津大学, 2006.

    PING Cuo. Application of atmospheric pollutant long-term diffusion model[D]. Tianjin: Tianjin University, 2006. (in Chinese).
    [10] TIRABASSI T, TAGLIAZUCCA M, ZANNETTI P. KAPPA-G, a non-Gaussian plume dispersion model: description and evaluation against tracer measurements[J]. Journal of the Air Pollution Control Association, 1986, 36(5): 592-596. doi: 10.1080/00022470.1986.10466095
    [11] 鲁楠, 姚恩建, 潘龙, 等. 基于高斯扩散模型的北京市道路交通空气污染的敏感性分析[J]. 道路交通与安全, 2015, 15(2): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-DLJA201502011.htm

    LU Nan, YAO En-jian, PAN Long, et al. Sensitivity analyses of the traffic-related air pollution in Beijing based on Gaussian dispersion models[J]. Road Traffic and Safety, 2015, 15(2): 55-60. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLJA201502011.htm
    [12] RAYNOR G S, MICHAEL P, BROWN R M, et al. Studies of atmospheric diffusion from a nearshore oceanic site[J]. Journal of Applied Meteorology, 1975, 14(6): 1080-1094. doi: 10.1175/1520-0450(1975)014<1080:SOADFA>2.0.CO;2
    [13] 王丹. 道路运输有毒气体泄漏扩散模拟分析研究[D]. 成都: 西南交通大学, 2011.

    WANG Dan. Research on simulation and analysis of toxic gas dispersion from rode tank car[D]. Chengdu: Southwest Jiaotong University, 2011. (in Chinese).
    [14] RAMADAN A A, AL-SUDAIRAWI M, ALHAJRAF S, et al. Total SO2 emissions from power stations and evaluation of their impact in Kuwait using a Gaussian plume dispersion model[J]. American Journal of Environmental Sciences, 2008, 4(1): 1-12. doi: 10.3844/ajessp.2008.1.12
    [15] WILSON J D, FLESCH T K, SWATERS G E. Dispersion in sheared Gaussian homogeneous turbulence[J]. BoundaryLayer Meteorology, 1993, 62(1): 281-290.
    [16] 冷海芹, 孙海燕, 吴泽洪, 等. 危化品气体泄漏事故的扩散模拟研究与实现[J]. 测绘科学, 2012, 37(4): 73-75, 78. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201204025.htm

    LENG Hai-qin, SUN Hai-yan, WU Ze-hong, et al. Research and implementation of diffusion simulation of hazardous gases leakage accidents[J]. Science of Surveying and Mapping, 2012, 37(4): 73-75, 78. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201204025.htm
    [17] PEREIRA L L, DA COSTA C P, VILHENA M T, et al. Puff models for simulation of fugitive hazardous emissions in atmosphere[J]. Journal of Environmental Protection, 2011, 2(2): 154-161. doi: 10.4236/jep.2011.22017
    [18] TSUANG B J, CHEN C L, LIN C H, et al. Quantification on the source/receptor relationship of primary pollutants and secondary aerosols by a Gaussian plume trajectory model: PartⅡ. Case study[J]. Atmospheric Environment, 2003, 37(28): 3993-4006. doi: 10.1016/S1352-2310(03)00472-2
    [19] HORST T W. A surface depletion model for deposition from a Gaussian plume[J]. Atmospheric Environment, 1977, 11(1): 41-46. doi: 10.1016/0004-6981(77)90204-9
    [20] HUQ P, FRANZESE P. Measurements of turbulence and dispersion in three idealized urban canopies with different aspect ratios and comparisons with a Gaussian plume model[J]. Boundary-Layer Meteorology, 2013, 147(1): 103-121. doi: 10.1007/s10546-012-9780-z
    [21] 何佳, 宣爱国, 吴元欣, 等. 氯乙烯的泄漏扩散模拟[J]. 武汉工程大学学报, 2009, 31(12): 1-4. doi: 10.3969/j.issn.1674-2869.2009.12.001

    HE Jia, XUAN Ai-guo, WU Yuan-xin, et al. Model of drain diffusion of chloroethylene[J]. Journal of Wuhan Institute of Technology, 2009, 31(12): 1-4. (in Chinese). doi: 10.3969/j.issn.1674-2869.2009.12.001
    [22] DRAXLER R R. Determination of atmospheric diffusion parameters[J]. Atmospheric Environment, 1976, 10(2): 99-105. doi: 10.1016/0004-6981(76)90226-2
    [23] PORTÉ-AGEL F, PAHLOW M, MENEVEAU C, et al. Atmospheric stability effect on subgrid-scale physics for large-eddy simulation[J]. Advances in Water Resources, 2001, 24(9-10): 1085-1102. doi: 10.1016/S0309-1708(01)00039-2
    [24] MATSUI T, MASUNAGA H, KREIDENWEIS S M, et al. Satellite-based assessment of marine low cloud variability associated with aerosol, atmospheric stability, and the diurnal cycle[J]. Journal of Geophysical Research, 2006, 111(17): 1-16.
    [25] PONTIGGIA M, DERUDI M, BUSINI V, et al. Hazardous gas dispersion: a CFD model accounting for atmospheric stability classes[J]. Journal of Hazardous Materials, 2009, 171(1-3): 739-747. doi: 10.1016/j.jhazmat.2009.06.064
    [26] HWANG P A, SHEMDIN O H. Modulation of short waves by surface currents: a numerical solution[J]. Journal of Geophysical Research, 1990, 95(9): 16311-16318.
    [27] FREY M M, BROUGH N, FRANCE J L, et al. The diurnal variability of atmospheric nitrogen oxides(NO and NO2)above the Antarctic Plateau driven by atmospheric stability and snow emissions[J]. Atmospheric Chemistry and Physics, 2013, 13(6): 3045-3062. doi: 10.5194/acp-13-3045-2013
    [28] 黄倩, 陈长和, 黄建国. 几种大气稳定度分类方法和相应扩散参数的比较[J]. 兰州大学学报: 自然科学版, 1996, 32(3): 143-150. doi: 10.3321/j.issn:0455-2059.1996.03.028

    HUANG Qian, CHEN Chang-he, HUANG Jian-guo. Comparison of some stability classifications and the corresponding diffusion parameters[J]. Journal of Lanzhou University: Natural Sciences, 1996, 32(3): 143-150. (in Chinese). doi: 10.3321/j.issn:0455-2059.1996.03.028
    [29] DAVIDSON G A. A modified power law representation of the Pasquill-Gifford dispersion coefficients[J]. Journal of the Air and Waste Management Association, 1990, 40(8): 1146-1147. doi: 10.1080/10473289.1990.10466761
    [30] SEIGNEUR C, PAI P, TOMBACH I, et al. Modeling of potential power plant plume impacts on Dallas-Fort Worth visibility[J]. Journal of the Air and Waste Management Association, 2000, 50(5): 835-848. doi: 10.1080/10473289.2000.10464121
    [31] GIFFORDF A. Use of routine meteorological observations for estimating atmospheric dispersion[J]. Nuclear Safety, 1961, 2(4): 47-51.
    [32] GIFFORDF A. Turbulent diffusion-typing schemes: a review[J]. Nuclear Safety, 1976, 17(1): 68-86.
    [33] GRIFFITHSR F. Errors in the use of the Briggs parameterization for atmospheric dispersion coefficients[J]. Atmospheric Environment, 1994, 28(17): 2861-2865. doi: 10.1016/1352-2310(94)90086-8
    [34] BRIGGS G A. A plume rise model compared with observations[J]. Journal of the Air Pollution Control Association, 1965, 15(9): 433-438. doi: 10.1080/00022470.1965.10468404
    [35] CHITUMALLA P K, HARRIS D, THURAISINGHAM B, et al. Emergency response applications: dynamic plume modeling and real-time routing[J]. IEEE Internet Computing, 2008, 12(1): 38-44. doi: 10.1109/MIC.2008.11
    [36] GREEN A E S, SINGHAL R P, VENKATESWAR R. Analytic extensions of the Gaussian plume model[J]. Journal of the Air Pollution Control Association, 1980, 30(7): 773-776. doi: 10.1080/00022470.1980.10465108
    [37] DEMAEL E, CARISSIMO B. Comparative evaluation of an Eulerian CFD and Gaussian plume models based on Prairie Grass dispersion experiment[J]. Journal of Applied Meteorology and Climatology, 2008, 47(3): 888-900. doi: 10.1175/2007JAMC1375.1
    [38] SMITH R J. A Gaussian model for estimating odour emissions from area sources[J]. Mathematical and Computer Modelling, 1995, 21(9): 23-29. doi: 10.1016/0895-7177(95)00048-7
    [39] NOVAK J H, TURNERD B. An efficient Gaussian-plume multiple-source air quality algorithm[J]. Journal of the Air Pollution Control Association, 1976, 26(6): 570-575. doi: 10.1080/00022470.1976.10470285
    [40] BADY M, KATO S, OOKA R, et al. Comparative study of concentrations and distributions of CO and NO in an urban area: Gaussian plume model and CFD analysis[J]. WIT Transactions on Ecology and the Environment, 2006, 86: 55-64.
    [41] BEAUCHEMIN S S, HAMSHARI H O, BAUER M A. Passive atmospheric diffusion with Gaussian fragmentation[J]. International Journal of Computers and Applications, 2009, 31(2): 97-108. doi: 10.1080/1206212X.2009.11441930
    [42] FAY J A, ESCUDIER M, HOULT D P. A correlation of field observations of plume rise[J]. Journal of the Air Pollution Control Association, 1970, 20(6): 391-397. doi: 10.1080/00022470.1970.10469418
    [43] 张斌才, 赵军. 大气污染扩散的高斯烟羽模型及其GIS集成研究[J]. 环境监测管理与技术, 2008, 20(5): 17-19, 55. doi: 10.3969/j.issn.1006-2009.2008.05.005

    ZHANG Bin-cai, ZHAO Jun. Application of Gaussian plume model of atmosphere diffusion integrated with GIS[J]. The Administration and Technique of Environmental Monitoring, 2008, 20(5): 17-19, 55. (in Chinese). doi: 10.3969/j.issn.1006-2009.2008.05.005
    [44] 王海燕, 张岐山. 基于改进高斯烟羽模型的废弃物处理设施负效应测度[J]. 中国管理科学, 2012, 20(2): 102-106. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGK201202016.htm

    WANG Hai-yan, ZHANG Qi-shan. A model for obnoxious effect of waste disposal facilities measurement based on improved Gaussian plume model[J]. Chinese Journal of Management Science, 2012, 20(2): 102-106. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGK201202016.htm
    [45] 陈静锋, 柴瑞瑞, 闫浩, 等. 基于高斯烟羽模型的PM2.5污染源扩散规律模拟分析[J]. 系统工程, 2015, 33(9): 153-158. https://www.cnki.com.cn/Article/CJFDTOTAL-GCXT201509025.htm

    CHEN Jing-feng, CHAI Rui-rui, YAN Hao, et al. PM2.5pollution source diffusion law and simulation analysis based on the Gauss plume model[J]. Systems Engineering, 2015, 33(9): 153-158. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCXT201509025.htm
    [46] 梁俊丽, 孔维华, 费文华, 等. 基于复杂地形的高斯烟羽模型改进[J]. 环境工程学报, 2016, 10(6): 3125-3129. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201606055.htm

    LIANG Jun-li, KONG Wei-hua, FEI Wen-hua, et al. Improvement of Gaussian plume model in complex terrain[J]. Chinese Journal of Environmental Engineering, 2016, 10(6): 3125-3129. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201606055.htm
    [47] 康文超. 基于高斯烟羽模型的铁路易燃气体泄漏扩散分析[J]. 兰州交通大学学报, 2013, 32(6): 137-140. doi: 10.3969/j.issn.1001-4373.2013.06.030

    KANG Wen-chao. Analysis of leakage diffusion of flammable gas in railway transportation based on Gaussian plume model[J]. Journal of Lanzhou Jiaotong University, 2013, 32(6): 137-140. (in Chinese). doi: 10.3969/j.issn.1001-4373.2013.06.030
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  3246
  • HTML全文浏览量:  95
  • PDF下载量:  2284
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-01
  • 刊出日期:  2016-12-25

目录

    /

    返回文章
    返回