留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

临时养护区CMEM模型的微观仿真参数标定

高天智 陈宽民

高天智, 陈宽民. 临时养护区CMEM模型的微观仿真参数标定[J]. 交通运输工程学报, 2016, 16(6): 114-124.
引用本文: 高天智, 陈宽民. 临时养护区CMEM模型的微观仿真参数标定[J]. 交通运输工程学报, 2016, 16(6): 114-124.
GAO Tian-zhi, CHEN Kuan-min. Microscopic simulation parameter calibration of CMEM model for temporary maintenance zone[J]. Journal of Traffic and Transportation Engineering, 2016, 16(6): 114-124.
Citation: GAO Tian-zhi, CHEN Kuan-min. Microscopic simulation parameter calibration of CMEM model for temporary maintenance zone[J]. Journal of Traffic and Transportation Engineering, 2016, 16(6): 114-124.

临时养护区CMEM模型的微观仿真参数标定

基金项目: 

中国博士后科学基金项目 2016M590915

中央高校基本科研业务费专项资金项目 310821151016

中央高校基本科研业务费专项资金项目 310821151017

详细信息
    作者简介:

    高天智(1979-), 男, 辽宁盖州人, 长安大学讲师, 长安大学工学博士研究生, 从事交通运输规划与管理研究

    陈宽民(1957-), 男, 河南灵宝人, 长安大学教授, 工学博士

  • 中图分类号: U491

Microscopic simulation parameter calibration of CMEM model for temporary maintenance zone

More Information
    Author Bio:

    GAO Tian-zhi(1979-), male, lecturer, doctoral student, +86-29-82334027, 50613564@qq.com

    CHEN Kuan-min(1957-), male, professor, PhD, +86-29-82336690, chenkm@yeah.net

  • 摘要: 为了保证汽车尾气排放计算的准确性, 对临时养护区微观仿真模型进行参数标定。以河南许尉高速公路某临时养护区为例, 通过现场调查获取交通数据, 建立VISSIM交通仿真模型。根据实测数据对交通量与交通组成等宏观参数进行标定, 对期望速度、期望加速度采用特征点数值进行微观参数标定。利用正交试验法标定车头时距、跟车变量、进入跟车状态的阈值和振动加速度4种跟车模型参数。根据有效的仿真结果确定了期望速度与行驶速度之间的数值关系。利用有效的仿真数据结合CMEM模型进行临时养护区汽车尾气排放量计算, 得到了基于路段平均速度的尾气排放计算公式。分析结果表明: 宏观参数标定后的仿真速度与实测速度存在明显差异, 客车与货车速度的平均相对误差分别为11.36%与35.12%;结合微观参数标定后, 仿真速度与实测速度的平均相对误差均控制在3%以内, 客车与货车的期望速度分别为行驶速度的1.270、1.165倍; 仿真模型标定后的尾气排放量与实测值的相对误差均小于7%, 模型标定效果显著。

     

  • 图  1  链式雷达测速系统

    Figure  1.  Velocity measuring system of chain radar

    图  2  实测速度累计频率曲线

    Figure  2.  Cumulative frequency curves of measured speeds

    图  3  断面位置

    Figure  3.  Locations of sections

    图  4  加速度(正值)标定结果

    Figure  4.  Calibration results of accelerations(positive)

    图  5  加速度(负值)标定结果

    Figure  5.  Calibration results of accelerations(negative)

    图  6  期望速度分布曲线最终标定结果

    Figure  6.  Final calibration results of desired speed distribution curves

    图  7  CO2排放量对比

    Figure  7.  Comparison of CO2emissions

    图  8  NOx排放量对比

    Figure  8.  Comparison of NOx emissions

    图  9  CO排放量对比

    Figure  9.  Comparison of CO emissions

    表  1  实测速度与宏观标定后的仿真速度

    Table  1.   Measured speeds and simulated speeds after macroscopic calibration

    下载: 导出CSV

    表  2  期望速度初步标定值

    Table  2.   Initial calibrated values of desired speeds

    下载: 导出CSV

    表  3  特定速度下的加速度标定值

    Table  3.   Calibrated acceleration with specified speeds

    下载: 导出CSV

    表  4  交通特性参数

    Table  4.   Traffic property parameters

    下载: 导出CSV

    表  5  有效标定后的仿真结果

    Table  5.   Simulation result after effective calibration

    下载: 导出CSV

    表  6  期望速度曲线各控制点的标定值

    Table  6.   Calibrated values of control points on desired speed curves

    下载: 导出CSV

    表  7  标定因素水平

    Table  7.   Levels of calibration factors

    下载: 导出CSV

    表  8  试验方案与仿真结果

    Table  8.   Experimental programs and simulation results

    下载: 导出CSV

    表  9  极差分析结果

    Table  9.   Results of range analysis

    下载: 导出CSV

    表  10  优选方案仿真结果

    Table  10.   Simulation results of optimum schemes

    下载: 导出CSV

    表  11  四因素标定结果

    Table  11.   Calibration results of 4factors

    下载: 导出CSV
  • [1] SONG Guo-hua, YU Lei, ZHANG Yan-hong. Applicability of traffic microsimulation models in vehicle emissions estimates—case study of VISSIM[J]. Transportation Research Record, 2012(2270): 132-141.
    [2] ANYA A R, ROUPHAIL N M, FREY H C, et al. Application of AIMSUN microsimulation model to estimate emissions on signalized arterial corridors[J]. Transportation Research Record, 2014(2428): 75-86.
    [3] SONG Guo-hua, YU Lei, XU Long. Comparative analysis of car-following models for emissions estimation[J]. Transportation Research Record, 2013(2341): 12-22.
    [4] MAHBUB P, GOONETILLEKE A, AYOKO G A. Prediction model of the buildup of volatile organic compounds on urban roads[J]. Environmental Science and Technology, 2011, 45(10): 4453-4459. doi: 10.1021/es200307x
    [5] BARTH M, AN F, YOUNGLOVE T, et al. Comprehensive modal emissions model(CMEM)version 2.02: user's guide[R]. Riverside: University of California, 2001.
    [6] VITI F, HOOGENDOORN S P, VAN ZUYLEN H J, et al. Speed and acceleration distributions at a traffic signal analyzed from microscopic real and simulated data[C]//IEEE. Proceedings of the 11th International IEEE Conference on Intelligent Transportation Systems. New York: IEEE, 2008: 651-656.
    [7] 何春玉, 王歧东. 运用CMEM模型计算北京市机动车排放因子[J]. 环境科学研究, 2006, 19(1): 109-112. doi: 10.3321/j.issn:1001-6929.2006.01.027

    HE Chun-yu, WANG Qi-dong. Vehicle emission factors determination using CMEM in Beijing[J]. Research of Environmental Sciences, 2006, 19(1): 109-112. (in Chinese). doi: 10.3321/j.issn:1001-6929.2006.01.027
    [8] 徐成伟, 吴超仲, 初秀民, 等. 基于CMEM模型的武汉市轻型机动车平均排放因子研究[J]. 交通与计算机, 2008, 26(4): 185-188. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS200804049.htm

    XU Cheng-wei, WU Chao-zhong, CHU Xiu-min, et al. Light-duty vehicle average emission factors of Wuhan City based on CMEM model[J]. Computer and Communications, 2008, 26(4): 185-188. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS200804049.htm
    [9] 王轶, 何杰, 李旭宏, 等. 基于VISSIM的九华山隧道交通尾气污染模拟分析[J]. 武汉理工大学学报, 2012, 34(1): 109-113. doi: 10.3963/j.issn.1671-4431.2012.01.024

    WANG Yi, HE Jie, LI Xu-hong, et al. Simulation analysis of vehicle emissions in Jiuhuashan Tunnel based on the software VISSIM[J]. Journal of Wuhan University of Technology, 2012, 34(1): 109-113. (in Chinese). doi: 10.3963/j.issn.1671-4431.2012.01.024
    [10] 刘永红, 廖瀚博, 余志, 等. 基于环境影响的交叉口控制方式综合评估研究[J]. 中山大学学报: 自然科学版, 2013, 52(1): 12-16. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ201301002.htm

    LIU Yong-hong, LIAO Han-bo, YU Zhi, et al. Study of intersection control mode evaluation based on environmental effect[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2013, 52(1): 12-16. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ201301002.htm
    [11] BENEKOHAL R F. Procedure for validation of microscopic traffic flow simulation models[J]. Transportation Research Record, 1991(1320): 190-202.
    [12] HOURDAKIS J, MICHALOPOULOS P G, KOTTOMMANNIL J. A practical procedure for calibrating microscopic traffic simulation models[J]. Transportation Research Record, 2003(1852): 130-139.
    [13] CIUFFO B F, PUNZO V, TORRIERI V. A framework for the calibration of microscopic traffic flow models[C]//TRB. Transportation Research Board 86th Annual Meeting. Washington DC: TRB, 2007: 1-14.
    [14] LEE H J, KOUTRAKIS P. Daily ambient NO2concentration predictions using satellite ozone monitoring instrument NO2data and land use regression[J]. Environmental Science and Technology, 2014, 48(4): 2305-2311.
    [15] WU J, BRACKSTONE M, MCDONALD M. The validation of a microscopic simulation model: a methodological case study[J]. Transportation Research Part C: Emerging Technologies, 2003, 11(6): 463-479. doi: 10.1016/j.trc.2003.05.001
    [16] PARK B, QI H. Development and evaluation of a procedure for the calibration of simulation models[J]. Transportation Research Record, 2005(1934): 208-217.
    [17] KIM S J, KIM W, RILLETT L R. Calibration of microsimulation models using nonparametric statistical techniques[J]. Transportation Research Record, 2005(1935): 111-119.
    [18] ASAMER J, VAN ZUYLEN H J, HEILMANN B. Calibrating VISSIM to adverse weather conditions[C]//University of Leuven. 2nd International Conference on Models and Technologies for Intelligent Transportation Systems. Leuven: University of Leuven, 2011: 1-5.
    [19] 孙剑, 杨晓光. 微观交通仿真模型系统参数校正研究——以VISSIM的应用为例[J]. 交通与计算机, 2004, 22(3): 3-6. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS200403000.htm

    SUN Jian, YANG Xiao-guang. Research into microscopic traffic simulation model systematic parameter calibration: a case study of VISSIM[J]. Computer and Communications, 2004, 22(3): 3-6. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS200403000.htm
    [20] WILMINK I, VITI F, VAN BAALEN J, et al. Emission modelling at signalised intersections using microscopic models[C]//The Intelligent Transportation Society of America. Proceedings of16th ITS World Congress and Exhibition on Intelligent Transport Systems and Services. Washington DC: The Intelligent Transportation Society of America, 2009: 1-8.
    [21] 章玉, 于雷, 赵娜乐, 等. SPSA算法在微观交通仿真模型VISSIM参数标定中的应用[J]. 交通运输系统工程与信息, 2010, 10(4): 44-49. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201004008.htm

    ZHANG Yu, YU Lei, ZHAO Na-le, et al. Application of simultaneous perturbation stochastic approximation algorithm in parameter calibration of VISSIM microscope simulation model[J]. Journal of Transportation Systems Engineering and Information Technology, 2010, 10(4): 44-49. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201004008.htm
    [22] 胡兴华, 章玉. 基于SPGA算法的大规模交通仿真网络参数标定方法[J]. 吉林省教育学院学报, 2013, 29(5): 149-150. https://www.cnki.com.cn/Article/CJFDTOTAL-JLJB201305068.htm

    HU Xing-hua, ZHANG Yu. Large-scale network traffic simulation parameter calibration method based on SPGA algorithm[J]. Journal of Educational Institute of Jilin Province, 2013, 29(5): 149-150. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JLJB201305068.htm
  • 加载中
图(9) / 表(11)
计量
  • 文章访问数:  3409
  • HTML全文浏览量:  125
  • PDF下载量:  2365
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-29
  • 刊出日期:  2016-12-25

目录

    /

    返回文章
    返回