Microscopic simulation parameter calibration of CMEM model for temporary maintenance zone
-
摘要: 为了保证汽车尾气排放计算的准确性, 对临时养护区微观仿真模型进行参数标定。以河南许尉高速公路某临时养护区为例, 通过现场调查获取交通数据, 建立VISSIM交通仿真模型。根据实测数据对交通量与交通组成等宏观参数进行标定, 对期望速度、期望加速度采用特征点数值进行微观参数标定。利用正交试验法标定车头时距、跟车变量、进入跟车状态的阈值和振动加速度4种跟车模型参数。根据有效的仿真结果确定了期望速度与行驶速度之间的数值关系。利用有效的仿真数据结合CMEM模型进行临时养护区汽车尾气排放量计算, 得到了基于路段平均速度的尾气排放计算公式。分析结果表明: 宏观参数标定后的仿真速度与实测速度存在明显差异, 客车与货车速度的平均相对误差分别为11.36%与35.12%;结合微观参数标定后, 仿真速度与实测速度的平均相对误差均控制在3%以内, 客车与货车的期望速度分别为行驶速度的1.270、1.165倍; 仿真模型标定后的尾气排放量与实测值的相对误差均小于7%, 模型标定效果显著。Abstract: In order to ensure the accuracy of automobile exhaust emission calculation, the parameters of microscopic simulation model for temporary maintenance zone were calibrated.The temporary maintenance zone located on the Xuwei Highway in Henan Province was taken as example, the traffic data were measured through field investigation.The VISSIM traffic simulation model was built.According to the measured data, the macroscopic parameters of traffic volume and traffic composition were calibrated, the microscopic parameters such as desired speed, desired acceleration were calibrated by using the values of feature points.Four parameters of car-following model including headway time, following variation, threshold for entering following status and vibration acceleration were calibrated by using orthogonal test.According to the valid simulation results, the numerical relationship between the desired speed and the running speed was determined.The emission of automobile exhaust was calculated by using the CMEM model with valid simulated data, and the calculation formulae of emissions were put forward based on average speeds.Analysis result shows the simulated speeds only calibrated by using macroscopic parameters are apparently different from the measured speeds, and the averagerelative errors of speeds for passenger car and truck are 11.36% and 35.12%.Combined with microscopic parameters calibration, the average relative error between measured and simulated speeds is lower than 3%.The desired speeds are 1.270 and 1.165 times of running speeds for passenger car and truck.After calibration, the relative error of simulated and measured emissions is less than 7%, and the calibration effect of model is remarkable.
-
Key words:
- traffic engineering /
- temporary maintenance zone /
- automobile exhaust emission /
- CMEM /
- VISSIM /
- parameter calibration
-
表 1 实测速度与宏观标定后的仿真速度
Table 1. Measured speeds and simulated speeds after macroscopic calibration
表 2 期望速度初步标定值
Table 2. Initial calibrated values of desired speeds
表 3 特定速度下的加速度标定值
Table 3. Calibrated acceleration with specified speeds
表 4 交通特性参数
Table 4. Traffic property parameters
表 5 有效标定后的仿真结果
Table 5. Simulation result after effective calibration
表 6 期望速度曲线各控制点的标定值
Table 6. Calibrated values of control points on desired speed curves
表 7 标定因素水平
Table 7. Levels of calibration factors
表 8 试验方案与仿真结果
Table 8. Experimental programs and simulation results
表 9 极差分析结果
Table 9. Results of range analysis
表 10 优选方案仿真结果
Table 10. Simulation results of optimum schemes
表 11 四因素标定结果
Table 11. Calibration results of 4factors
-
[1] SONG Guo-hua, YU Lei, ZHANG Yan-hong. Applicability of traffic microsimulation models in vehicle emissions estimates—case study of VISSIM[J]. Transportation Research Record, 2012(2270): 132-141. [2] ANYA A R, ROUPHAIL N M, FREY H C, et al. Application of AIMSUN microsimulation model to estimate emissions on signalized arterial corridors[J]. Transportation Research Record, 2014(2428): 75-86. [3] SONG Guo-hua, YU Lei, XU Long. Comparative analysis of car-following models for emissions estimation[J]. Transportation Research Record, 2013(2341): 12-22. [4] MAHBUB P, GOONETILLEKE A, AYOKO G A. Prediction model of the buildup of volatile organic compounds on urban roads[J]. Environmental Science and Technology, 2011, 45(10): 4453-4459. doi: 10.1021/es200307x [5] BARTH M, AN F, YOUNGLOVE T, et al. Comprehensive modal emissions model(CMEM)version 2.02: user's guide[R]. Riverside: University of California, 2001. [6] VITI F, HOOGENDOORN S P, VAN ZUYLEN H J, et al. Speed and acceleration distributions at a traffic signal analyzed from microscopic real and simulated data[C]//IEEE. Proceedings of the 11th International IEEE Conference on Intelligent Transportation Systems. New York: IEEE, 2008: 651-656. [7] 何春玉, 王歧东. 运用CMEM模型计算北京市机动车排放因子[J]. 环境科学研究, 2006, 19(1): 109-112. doi: 10.3321/j.issn:1001-6929.2006.01.027HE Chun-yu, WANG Qi-dong. Vehicle emission factors determination using CMEM in Beijing[J]. Research of Environmental Sciences, 2006, 19(1): 109-112. (in Chinese). doi: 10.3321/j.issn:1001-6929.2006.01.027 [8] 徐成伟, 吴超仲, 初秀民, 等. 基于CMEM模型的武汉市轻型机动车平均排放因子研究[J]. 交通与计算机, 2008, 26(4): 185-188. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS200804049.htmXU Cheng-wei, WU Chao-zhong, CHU Xiu-min, et al. Light-duty vehicle average emission factors of Wuhan City based on CMEM model[J]. Computer and Communications, 2008, 26(4): 185-188. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS200804049.htm [9] 王轶, 何杰, 李旭宏, 等. 基于VISSIM的九华山隧道交通尾气污染模拟分析[J]. 武汉理工大学学报, 2012, 34(1): 109-113. doi: 10.3963/j.issn.1671-4431.2012.01.024WANG Yi, HE Jie, LI Xu-hong, et al. Simulation analysis of vehicle emissions in Jiuhuashan Tunnel based on the software VISSIM[J]. Journal of Wuhan University of Technology, 2012, 34(1): 109-113. (in Chinese). doi: 10.3963/j.issn.1671-4431.2012.01.024 [10] 刘永红, 廖瀚博, 余志, 等. 基于环境影响的交叉口控制方式综合评估研究[J]. 中山大学学报: 自然科学版, 2013, 52(1): 12-16. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ201301002.htmLIU Yong-hong, LIAO Han-bo, YU Zhi, et al. Study of intersection control mode evaluation based on environmental effect[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2013, 52(1): 12-16. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ201301002.htm [11] BENEKOHAL R F. Procedure for validation of microscopic traffic flow simulation models[J]. Transportation Research Record, 1991(1320): 190-202. [12] HOURDAKIS J, MICHALOPOULOS P G, KOTTOMMANNIL J. A practical procedure for calibrating microscopic traffic simulation models[J]. Transportation Research Record, 2003(1852): 130-139. [13] CIUFFO B F, PUNZO V, TORRIERI V. A framework for the calibration of microscopic traffic flow models[C]//TRB. Transportation Research Board 86th Annual Meeting. Washington DC: TRB, 2007: 1-14. [14] LEE H J, KOUTRAKIS P. Daily ambient NO2concentration predictions using satellite ozone monitoring instrument NO2data and land use regression[J]. Environmental Science and Technology, 2014, 48(4): 2305-2311. [15] WU J, BRACKSTONE M, MCDONALD M. The validation of a microscopic simulation model: a methodological case study[J]. Transportation Research Part C: Emerging Technologies, 2003, 11(6): 463-479. doi: 10.1016/j.trc.2003.05.001 [16] PARK B, QI H. Development and evaluation of a procedure for the calibration of simulation models[J]. Transportation Research Record, 2005(1934): 208-217. [17] KIM S J, KIM W, RILLETT L R. Calibration of microsimulation models using nonparametric statistical techniques[J]. Transportation Research Record, 2005(1935): 111-119. [18] ASAMER J, VAN ZUYLEN H J, HEILMANN B. Calibrating VISSIM to adverse weather conditions[C]//University of Leuven. 2nd International Conference on Models and Technologies for Intelligent Transportation Systems. Leuven: University of Leuven, 2011: 1-5. [19] 孙剑, 杨晓光. 微观交通仿真模型系统参数校正研究——以VISSIM的应用为例[J]. 交通与计算机, 2004, 22(3): 3-6. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS200403000.htmSUN Jian, YANG Xiao-guang. Research into microscopic traffic simulation model systematic parameter calibration: a case study of VISSIM[J]. Computer and Communications, 2004, 22(3): 3-6. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS200403000.htm [20] WILMINK I, VITI F, VAN BAALEN J, et al. Emission modelling at signalised intersections using microscopic models[C]//The Intelligent Transportation Society of America. Proceedings of16th ITS World Congress and Exhibition on Intelligent Transport Systems and Services. Washington DC: The Intelligent Transportation Society of America, 2009: 1-8. [21] 章玉, 于雷, 赵娜乐, 等. SPSA算法在微观交通仿真模型VISSIM参数标定中的应用[J]. 交通运输系统工程与信息, 2010, 10(4): 44-49. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201004008.htmZHANG Yu, YU Lei, ZHAO Na-le, et al. Application of simultaneous perturbation stochastic approximation algorithm in parameter calibration of VISSIM microscope simulation model[J]. Journal of Transportation Systems Engineering and Information Technology, 2010, 10(4): 44-49. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201004008.htm [22] 胡兴华, 章玉. 基于SPGA算法的大规模交通仿真网络参数标定方法[J]. 吉林省教育学院学报, 2013, 29(5): 149-150. https://www.cnki.com.cn/Article/CJFDTOTAL-JLJB201305068.htmHU Xing-hua, ZHANG Yu. Large-scale network traffic simulation parameter calibration method based on SPGA algorithm[J]. Journal of Educational Institute of Jilin Province, 2013, 29(5): 149-150. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JLJB201305068.htm