留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CS-SD的车载环境下实时行人检测模型

郭爱英 徐美华 冉峰 王琪

郭爱英, 徐美华, 冉峰, 王琪. 基于CS-SD的车载环境下实时行人检测模型[J]. 交通运输工程学报, 2016, 16(6): 132-139.
引用本文: 郭爱英, 徐美华, 冉峰, 王琪. 基于CS-SD的车载环境下实时行人检测模型[J]. 交通运输工程学报, 2016, 16(6): 132-139.
GUO Ai-ying, XU Mei-hua, RAN Feng, WANG Qi. Model of real-time pedestrian detection under vehicle environment based on CS-SD[J]. Journal of Traffic and Transportation Engineering, 2016, 16(6): 132-139.
Citation: GUO Ai-ying, XU Mei-hua, RAN Feng, WANG Qi. Model of real-time pedestrian detection under vehicle environment based on CS-SD[J]. Journal of Traffic and Transportation Engineering, 2016, 16(6): 132-139.

基于CS-SD的车载环境下实时行人检测模型

基金项目: 

国家自然科学基金项目 61376028

详细信息
    作者简介:

    郭爱英(1984-), 女, 山西太原人, 山西轻工职业技术学院讲师, 上海大学工学博士研究生, 从事汽车电子与车辆辅助驾驶系统研究

    徐美华(1957-), 女, 上海人, 上海大学教授, 工学博士

  • 中图分类号: U491.6

Model of real-time pedestrian detection under vehicle environment based on CS-SD

More Information
    Author Bio:

    GUO Ai-ying(1984-), female, lecturer, doctoral student, +86-21-56331632, gayshh@shu.edu.cn

    XU Mei-hua(1957-), female, professor, PhD, +86-21-56331632, mhxu@shu.edu.cn

  • 摘要: 针对车辆辅助驾驶系统中行人检测的实时性问题, 提出一种基于路面边缘线标定结合显著性纹理检测(CS-SD) 的算法和定位方向梯度直方图(L-HOG) 的行人检测模型, 应用CS-SD算法替代穷尽搜索快速标定图像中的行人区域, 应用L-HOG快速提取行人特征, 并采用附加核心的支持向量机(AK-SVM) 进行高效目标分类。分析结果表明: 在个人计算机上对包含832个行人的500幅图像进行检测时, 模型正确检测720个行人, 检测率为86.5%, 误检率为4.1%, 检测时间为39ms; 在基于BF609的车载行人检测系统上对包含988个行人的48 400幅图像进行检测时, 模型正确检测861个行人, 漏检127个行人, 误检13个行人, 检测速度为20fps。可见, 提出的行人检测模型在不降低检测率的前提下, 可以达到满意的检测速度, 并且可以用于实时行人检测车载设备。

     

  • 图  1  路面边缘线

    Figure  1.  Side-of-pavement lines

    图  2  行人检测流程

    Figure  2.  Pedestrian detection process

    图  3  用于测试的路面边缘线

    Figure  3.  Side-of-pavement lines for test

    图  4  不同算子的性能比较

    Figure  4.  Performance comparison of different operators

    图  5  几种模型的性能曲线

    Figure  5.  Performance curves of several models

    图  6  INRIA行人数据库的部分检测结果

    Figure  6.  Partial detection results of INRIA pedestrian database

    图  7  基于BF609的车载行人检测系统

    Figure  7.  Vehicle pedestrian detection system based on BF609

    图  8  车载行人检测系统的部分检测结果

    Figure  8.  Partial detection results of vehicle pedestrian detection system

    表  1  行人区域的标定结果

    Table  1.   Calibration results of pedestrian areas

    下载: 导出CSV

    表  2  HOG和L-HOG的检测结果

    Table  2.   Detection results of HOG and L-HOG

    下载: 导出CSV

    表  3  行人检测性能对比

    Table  3.   Performance comparison of pedestrian detection

    下载: 导出CSV

    表  4  车载行人检测系统的处理时间分布

    Table  4.   Processing time distribution of vehicle pedestrian detection system

    下载: 导出CSV
  • [1] BENENSON R, OMRAN M, HOSANG J, et al. Ten years of pedestrian detection, what have we learned?[J]. Lecture Notes in Computer Science, 2015, 8926: 613-627.
    [2] DIXIT R S, GANDHE S T. Pedestrian detection system for ADAS using Friendly ARM[C]//IEEE. 2015International Conference on Energy Systems and Applications. New York: IEEE, 2015: 557-560.
    [3] GERÓNIMO D, LÓPEZ A M, SAPPA A D, et al. Survey of pedestrian detection for advanced driver assistance systems[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(7): 1239-1258. doi: 10.1109/TPAMI.2009.122
    [4] HAJEK W, GAPONOVA I, FLEISCHER K H, et al. Workloadadaptive cruise control—a new generation of advanced driver assistance systems[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2013, 20: 108-120. doi: 10.1016/j.trf.2013.06.001
    [5] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//IEEE. 2005IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2005: 886-893.
    [6] WANG Xiao-yu, HAN T X, YAN Shui-cheng. An HOGLBP human detector with partial occlusion handling[C]//IEEE. 2009 IEEE International Conference on Computer Vision. New York: IEEE, 2009: 32-39.
    [7] FELZENSZWALB P, GIRSHICK R, MCALLESTER D, et al. Visual object detection with deformable part models[J]. Communications of the ACM, 2013, 56(9): 97-105. doi: 10.1145/2494532
    [8] FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D, et al. Object detection with discriminatively trained partbased models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627-1645. doi: 10.1109/TPAMI.2009.167
    [9] OUYANG Wan-li, ZENG Xing-xu, WANG Xiao-gang. Singlepedestrian detection aided by two-pedestrian detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1875-1889. doi: 10.1109/TPAMI.2014.2377734
    [10] DOLLÁR P, WOJEK C, SCHIELE B, et al. Pedestrian detection: an evaluation of the state of the art[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(4): 743-761. doi: 10.1109/TPAMI.2011.155
    [11] FELZENSZWALB P, MCALLESTER D, RAMANAN D. A discriminatively trained, multiscale, deformable part model[C]//IEEE. 2008 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2008: 1-8.
    [12] ZHANG Xiao-wei, HU Hai-miao, JIANG Fan, et al. Pedestrian detection based on hierarchical co-occurrence model for occlusion handling[J]. Neurocomputing, 2015, 168: 861-870. doi: 10.1016/j.neucom.2015.05.038
    [13] NEHANIV C L, DAUTENHAHN K, KUBACKI J, et al. A methodological approach relating the classification of gesture to identification of human intent in the context of humanrobot interaction[C]//IEEE. 2005IEEE International Workshop on Robots and Human Interactive Communication. New York: IEEE, 2005: 371-377.
    [14] CHO H, RYBSKI P E, BAR-HILLEL A, et al. Real-time pedestrian detection with deformable part models[C]//IEEE. 2012Intelligent Vehicles Symposium. New York: IEEE, 2012: 1035-1042.
    [15] CHEN Xiao-feng, HENRICKSON K, WANG Yin-hai. Kinectbased pedestrian detection for crowded scenes[J]. ComputerAided Civil and Infrastructure Engineering, 2016, 31(3): 229-240. doi: 10.1111/mice.12163
    [16] CHENG Hong, ZHENG Nan-ning, QIN Jun-jie. Pedestrian detection using sparse Gabor filter and support vector machine[C]//IEEE. 2005Intelligent Vehicles Symposium. New York: IEEE, 2005: 583-587.
    [17] WU Si, LAGANIRE R, PAYEUR P. Improving pedestrian detection with selective gradient self-similarity feature[J]. Pattern Recognition, 2015, 48(8): 2364-2376. doi: 10.1016/j.patcog.2015.01.005
    [18] ZHANG Shan-shan, BENENSON R, SCHIELE B. Filtered channel features for pedestrian detection[C]//IEEE. 2015IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2015: 1751-1760.
    [19] TIAN Yong-long, LUO Ping, WANG Xiao-gang, et al. Deep learning strong parts for pedestrian detection[C]//IEEE. 2015IEEE International Conference on Computer Vision. New York: IEEE, 2015: 1904-1912.
    [20] UIJLINGS J R R, VAN DE SANDE K E A, GEVERS T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2): 154-171. doi: 10.1007/s11263-013-0620-5
    [21] DEMIR B, BRUZZONE L. Fast and accurate image classification with histogram based features and additive kernel SVM[C]//IEEE. 2015 IEEE International Geoscience and Remote Sensing Symposium. New York: IEEE, 2015: 2350-2353.
    [22] MAJI S, BERG A C, MALIK J. Efficient classification for additive kernel SVMs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 66-77. doi: 10.1109/TPAMI.2012.62
    [23] 孙锐, 陈军, 高隽. 基于显著性检测与HOG-NMF特征的快速行人检测方法[J]. 电子与信息学报, 2013, 35(8): 1921-1926. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201308023.htm

    SUN Rui, CHEN Jun, GAO Jun. Fast pedestrian detection based on saliency detection and HOG-NMF features[J]. Journal of Electronics and Information Technology, 2013, 35(8): 1921-1926. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201308023.htm
    [24] WU Jian-xin, GEYER C, REHG J M. Real-time human detection using contour cues[C]//IEEE. 2011IEEE International Conference on Robotics and Automation. New York: IEEE, 2011: 860-867.
    [25] 曾波波, 王贵锦, 林行刚. 基于颜色自相似度特征的实时行人检测[J]. 清华大学学报: 自然科学版, 2012, 52(4): 571-574. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201204030.htm

    ZENG Bo-bo, WANG Gui-jin, LIN Xing-gang. Color selfsimilarity feature based real-time pedestrian detection[J]. Journal of Tsinghua University: Science and Technology, 2012, 52(4): 571-574. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201204030.htm
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  3300
  • HTML全文浏览量:  128
  • PDF下载量:  2752
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-21
  • 刊出日期:  2016-12-25

目录

    /

    返回文章
    返回